• Title/Summary/Keyword: High neutron flux research reactor

Search Result 36, Processing Time 0.026 seconds

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF

The Iodine Content in Common Korean Foods (한국인의 상용식품내 요오드 함량)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.31 no.2
    • /
    • pp.206-212
    • /
    • 1998
  • This study was undertaken to analyze the iodine content in commonly donsumed Korean foods. Food samples were purchased from 3 randomly selected markets. The iodine contents in foods were determined by nuetron activation analysis (NAA). All irradiation of food samples were done at a pnueumatic transfer system (thermal nuetron flux : 1 $\times$1013n/$\textrm{cm}^2$.s) of the TRIGA MarkIII research reactor in the Korea Atomic Energy Research Institute . The results indicated that the iodine content was high in seaweeds, fishes, and iodine-enriched eggs in that order and very low in grain, beans , fruits and vegetables. Edible seaweeds contained iodine levels of between 13,700 and 1,790, 600$\mu\textrm{g}$/kg. Levels of iodine in fishes and shellfishes were between 478 and 2, 840$\mu\textrm{g}$/kg. Ordinary eggs contained 314$\mu\textrm{g}$/kg iodine, but iodine -enriched eggs contained 1,869$\mu\textrm{g}$/kg. The average concentration of iodine in milk was 207$\mu\textrm{g}$/kg. There was seasonal variation in the iodine content of milk , levels were highest in winter milk(230$\mu\textrm{g}$/kg) and lowest in summer milk(180$\mu\textrm{g}$/kg).The idodine contents of most vegetables and fruits were below 10$\mu\textrm{g}$/kg. The iodine contents of most vegetables and fruits were below 10$\mu\textrm{g}$/kg. From high to low , the sequence of foods with high iodine content in one serving was as follows ; sea tangle , sea mustard, iodine-enriched eggs, fish , laver and milk. This study may provide basic data on the iodine content of foods consumed by Korean which have not yet been analyzed .

  • PDF

The Construction Status of Fuel Test Loop Facility (핵연료 노내조사시험설비의 시공 현황)

  • Park, Kook-Nam;Lee, Chung-Young;Kim, Hark-Rho;Yoo, Hyun-Jae;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.305-309
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. The Commissioning of the FTL is to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

MECHANICAL AND IRRADIATION PROPERTIES OF ZIRCONIUM ALLOYS IRRADIATED IN HANARO

  • Kwon, Oh-Hyun;Eom, Kyong-Bo;Kim, Jae-Ik;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, $1.1{\times}10^{21}\;n/cm^2$). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed.