• Title/Summary/Keyword: High luminance

Search Result 550, Processing Time 0.023 seconds

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Stability of ITO/Buffer Layer/TPD/Alq3/Cathode Organic Light-emitting Diode

  • Chung, Dong-Hoe;Ahn, Joon-Ho;Oh, Hyun-Seok;Park, Jung-Kyu;Lee, Won-Jae;Choi, Sung-Jai;Jang, Kyung-Uk;Shin, Eun-Chul;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.260-264
    • /
    • 2007
  • We have studied stability in organic light-emitting diode depending on buffer layer and cathode. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. An electron injection energy barrier into organic material is different depending on a work function of cathodes. Theoretically, the energy barriers for the electron injection are 1.2 eV, -0.1 eV, and 0.0 eV for Al, LiAl, and LiF/Al at 300 K, respectively. We considered the cases that holes are injected to organic light-emitting diode. The hole injection energy barrier is about 0.7 eV between ITO and TPD without buffer layer. For hole-injection buffer layers of CuPc and PEDOT:PSS, the hole injection energy barriers are 0.4 eV and 0.5 eV, respectively. When the buffer layer of CuPc and PEDOT:PSS is existed, we observed the effects of hole injection energy barrier, and a reduction of operating-voltage. However, in case of PVK buffer layer, the hole injection energy barrier becomes high(1.0 eV). Even though the operating voltage becomes high, the efficiency is improved. A device structure for optimal lifetime condition is ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl at an initial luminance of $300cd/m^2$.

Controlling Tyrophagus putrescentiae Adults in LED-Equipped Y-Maze Chamber (LED-Equipped Y-Maze Chamber에 대한 긴털가루응애 성충의 방제효과)

  • Lee, Sang-Min;Lee, Jeong-Bin;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.101-104
    • /
    • 2015
  • To evaluate four different light-emitting diodes (LEDs) as potential attractants for Tyrophagus putrescentiae adults, attractiveness of blue (470 nm), green (520 nm), yellow (590 nm), and red (625 nm) LEDs were investigated at 20, 40, and 60 lx luminance intensity in LED-equipped Y-maze chamber and compared with the response to black light bulb (BLB), which is used in commercial traps. The BLB, the blue LED, the green LED, the yellow LED, and the red LED did not show the attractive to T. putrescentiae adults. These results suggested that four LEDs tested could not be used for environment-friendly control of T. putrescentiae adults.

AWM Driving Method with Hybrid Current Control for PM-OLED Panel (수동형 OLED를 위한 복합 전류 제어 기능을 갖는 AWM 구동방식)

  • Kim, Seok-Man;Lee, Je-Hoon;Hur, Yeo-Jin;Kim, Yong-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.116-123
    • /
    • 2007
  • This paper proposed a new amplitude width modulation for OLED data driver IC. The data driver controls brightness of OLED by adjusting amplitude and width of the data drive current pulse. There were two conventional methods; pulse amplitude modulation(PAM) and pulse width modulation(PWM). The PWM method suffered from lower light emitting time efficiency at low luminance signal. The PAM method suffered from large chip area using DACs for each column. The proposed method was aiming at accurately controlling of the current level by MSB data and light emitting efficiency by LSB data to improve the inefficiencies of the PAM and a PWM. The proposed AWM driver circuit implemented using $0.35-{\mu}m$ 3-poly 4-metal CMOS high voltage process. The simulation result shows the improvement in the accuracy of the gray level control even though the driver circuit is smaller than the PAM.

The Fabrication and Design of Driving Circuit for LCD panel using the high efficiency LED (고 효율 LED를 이용한 LCD 패널 구동회로의 설계 및 제작)

  • Ryu, Jang-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3146-3151
    • /
    • 2012
  • For using them as a optical source of inspections equipment for LCD panel, the design ofexcellent backlight system, brightness uniformity and high power and good protection against heat is essential.In this paper, backlight system which is built in the 45 inch side emitting LCD backlight by LED arraystructure and driving circuit were designed and developed. After that, their performances were measured. Itshowed the luminance from 3,000 to 25,000[$cd/m^2$], the mean value x:0.3144, y:0.3076 of x-y chromaticity,dimming range of 27~515[$cd/m^2$], free flicker noise in the 80kHz and black level of 0.7~0.1[$cd/m^2$], thermaltest of cooling system in 20,000[$cd/m^2$] over values.

A Stable and Efficient Host Material Having Tetraphenylsilane for Phosphorescent Organic Light Emitting Diodes

  • Park, Hyung-Dol;Kang, Jae-Wook;Lee, Deug-Sang;Kim, Ji-Whan;Jeong, Won-Ik;Park, Young-Seo;Lee, Se-Hyung;Go, Kyung-Moon;Lee, Jong-Soon;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.503-505
    • /
    • 2008
  • A host material containing tetraphenylsilane, 9-(4-triphenylsilanyl-(1,1'4,1")-terphenyl-4"-yl)-9H-cabazole (TSTC), was synthesized for green phosphorescent organic emitting diodes. $Ir(ppy)_3$ based OLEDs using TSTC host and DTBT (2,4-diphenyl-6-(4'yl)-1,3,5-triazine) hole blocking layer (HBL) showed the maximum external quantum efficiency of 19.8 %, the power efficiency of 59.4 lm and high operational stability with a half lifetime of 160,000 h at an initial luminance of $100\;cd/m^2$.

  • PDF

Performance Improvement of Chroma Intra Prediction (색차채널의 화면 내 예측 성능향상 기술)

  • Park, Jeeyoon;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.353-361
    • /
    • 2020
  • VVC (Versatile Video Coding) is a new video compression technique that is being standardized, and it supports HD / UHD / 8K video, and High Dynamic Range (HDR) video with a goal of approximately 2 times higher coding efficiency than the conventional HEVC. It also aims to support a variety of functionalities such as screen content coding, adaptive resolution changes, and independent sub-pictures. In this paper, we investigate the signaling process of intra prediction mode first, and develop an effective coding method of the chroma intra prediction mode. In case of the DM mode, the proposed method simplifies the prediction mode of the chorma intra prediction mode when referring to the angular mode of the luminance block. It can improve coding efficiency of the chroma intra prediction mode, and the proposed process can also consider the size of the block in order to further improve its coding efficiency.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

A Study on the Driving Waveform for High Contrast Ratio Realization of AC PDP (AC PDP에서 고콘트라스트 실현을 위한 구동 파형에 관한 연구)

  • An, Yang-Ki;Yoon, Dong-Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.27-33
    • /
    • 2002
  • This paper proposes a method to drive an AC plasma display panel(PDP) with a significantly improved contrast ratio. In the proposed method, during the first sub-field of one frame, all PDP cells are reset by the ramp waveform, and during the other sub-fields, only the cells turned on in the previous sub-field are reset. No light is emitted during the reset period of every sub-field except the first sub-field. For a 10-bit picture, the luminance of the dark level for the proposed method is 10 times lower than that for the conventional method, in which the ramp waveform for the reset is used in every sub-field. Accordingly, the contrast ratio for the proposed method is 10 times higher than that for the conventional method. For the 10-bit picture, the measured contrast ratio was about 3080:1 for the proposed method and about 285:1 for the conventional method, resulting in 10.8 times increase in the contrast ratio. This result shows that the proposed method can realize an image with high contrast ratio.

A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator (단순 라플라스 연산자를 사용한 새로운 고속 및 고성능 영상 화질 측정 척도)

  • Bae, Sung-Ho;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.157-168
    • /
    • 2016
  • In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test.