• Title/Summary/Keyword: High impact strength

Search Result 680, Processing Time 0.029 seconds

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • Yu, Gi-Cheon;;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

Technology Trends and Patenting Prospects of Medicinal Plants in Korea (한국 약용작물의 기술 동향 및 특허 전망)

  • Choi, Ji Weon;Kim, Su Yeon;Yu, Go Eun;Kim, Chang Kug
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • Background: Medicinal plants are widely used in Asia. They have proven to be an invaluable asset in modern drug discovery and their demand has been steadily increasing across various industries. Methods and Results: Using 4,867 valid patents related to 12 oriental medicinal plants of 10 country groups, the growth and development potential of patents was evaluated. The cites per patent (CPP) and patent family size (PFS) indices were used to evaluate the market capability and technological level of the collected patents. Meanwhile, the patent impact index (PII) and technology strength (TS) were used to compare the technological competitiveness of patents among various technology types and markets. Both CPP and PFS indices showed that magnolia-vine and balloon flower have numerous core or original patents. Furthermore, an increase in both PII and TS indices was observed. A newly designed intellectual property multi-layer (IPM) model predicted that the medicine, genome and cosmetic categories have a high possibility of patent application growth. Conclusions: The IPM model can be used to provide the scope of particular technology fields for patent development. In addition, this study can assist patents to advance in the international market and guide the development of a national industrial strategy.

A Study on the Physical Properties of PP/Kenaf Felt Composites According to Kenaf Fiber Compositions (케냐프 섬유 조성에 따른 PP/케냐프 펠트 복합체의 물리적 성질 연구)

  • Ku, Sun Gyo;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.471-476
    • /
    • 2022
  • PP/KF felt was used to load a high content of kenaf fiber (KF) into polypropylene (PP), and polyurethane (PU) was used as a binder. In order to find an optimum composition ratio of the PU binder, the flexural strength of the PP/KF/PU felt composite according to the isocyanate and polyol ratio was evaluated. PP-g-MAH grafted with maleic anhydride (MAH) was applied as a compatibilizer. Tensile, flexural, and impact properties were evaluated to consider changes in mechanical properties of the PP/KF/PU felt composite, and the properties were improved.

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1331-1344
    • /
    • 2021
  • This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Mapping of Education Quality and E-Learning Readiness to Enhance Economic Growth in Indonesia

  • PRAMANA, Setia;ASTUTI, Erni Tri
    • Asian Journal of Business Environment
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • Purpose: This study is aimed to map the provinces in Indonesia based on the education and ICT indicators using several unsupervised learning algorithms. Research design, data, and methodology: The education and ICT indicators such as student-teacher ratio, illiteracy rate, net enrolment ratio, internet access, computer ownership, are used. Several approaches to get deeper understanding on provincial strength and weakness based on these indicators are implemented. The approaches are Ensemble K-Mean and Fuzzy C Means clustering. Results: There are at least three clusters observed in Indonesia the education quality, participation, facilities and ICT Access. Cluster with high education quality and ICT access are consist of DKI Jakarta, Yogyakarta, Riau Islands, East Kalimantan and Bali. These provinces show rapid economic growth. Meanwhile the other cluster consisting of six provinces (NTT, West Kalimantan, Central Sulawesi, West Sulawesi, North Maluku, and Papua) are the cluster with lower education quality and ICT development which impact their economic growth. Conclusions: The provinces in Indonesia are clustered into three group based on the education attainment and ICT indicators. Some provinces can directly implement e-learning; however, more provinces need to improve the education quality and facilities as well as the ICT infrastructure before implementing the e-learning.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Prediction of longitudinal wave speed in rock bolt coupled with Multilayer Neural Network (MNN) algorithm

  • Jung-Doung Yu;Geunwoo Park;Dong-Ju Kim;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Non-destructive methods are extensively utilized for assessing the integrity of rock bolts, with longitudinal wave speed being a crucial property for evaluating rock bolt quality. This research aims to propose a method for predicting reliable longitudinal wave velocities by leveraging various properties of the rock surrounding the rock bolt. The prediction algorithm employed is the Multilayer Neural Network (MNN), and the input properties includes elastic modulus, shear wave speed, compressive strength, compressional wave speed, mass density, porosity, and Poisson's ratio, totaling seven. The implementation of the MNN demonstrates high reliability, achieving a coefficient of determination of 0.996. To assess the impact of each input property on longitudinal wave speed, an importance score is derived using the random forest algorithm, with the elastic modulus identified as having the most significant influence. When the elastic modulus is the sole input parameter, the coefficient of determination for predicting the longitudinal wave speed is observed to be 0.967. The findings of this study underscore the reliability of selecting specific properties for predicting longitudinal wave speed and suggest that these insights can assist in identifying relevant input properties for rock bolt integrity assessments in future construction site experiments.