• Title/Summary/Keyword: High impact polystyrene

Search Result 47, Processing Time 0.022 seconds

Preparation and Characteristics of Sulfonated HIPS ion Exchange Nanofiber by Electrospinning (전기방사에 의한 술폰화 HIPS 이온교환 나노섬유의 제조 및 특성)

  • Choi, Eun-Jung;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • In this study, it was prepared for nanofiber with high impact polystyrene(HIPS). HIPS is able to crosslinking after electrospinning with crosslinking agent and it could overcome brittle characteristics of polystyrene(PS). After thermal crosslinking, HIPS nanofiber was sulfonated by sulfuric acid. It was investigated FT-IR, XPS, water uptake, ion exchange capacity(IEC), SEM, and contact angle. According to the result of FT-IR and XPS, it was increased due to introduce the hydrophilic group($SO_3H$) in the HIPS nanofiber. The highest water uptake and IEC were 75.6%, 2.67 meq/ g at 120 min sulfonation time with 7.5 wt% DVB.

Fatigue Characteristic of HIPS(HR-1360) Materials (HIPS(HR-1360) 재료의 피로 특성 평가)

  • Park, Jae-Sil;Seok, Chang-Sung;Lee, Jong-Gyu;Lee, Jae-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.129-134
    • /
    • 2000
  • Recently, HIPS(High Impact Polystyrene) materials are spot-lighted as office equipment, home electronics, electronics appliances housing, packing containers, etc. But its using are occur to problem caused by fatigue fracture. However, its strength is larged affected by environmental conditions. So, in this paper it tried to analyze the effect of temperature by tensile test and fatigue test. It was observed that yield strength and ultimate strength, fatigue life of same stress decreased relatively with increase temperature. Further, this paper predict S-N curve using the result of tensile test and micro vickers hardness test. For this purpose, the management in the engineering department is able to design the fatigue life of HIPS(HR-1360) materials.

  • PDF

A Study on the Dynamic Properties by Loading Time of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 재하시간에 따른 동적 특성 연구)

  • Kim, Heung-Sik;Jin, Pil-Hwa;Joo, Si-Woong;Jung, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.942-945
    • /
    • 2005
  • The purpose of this study is to suggest a fundamental data for change of dynamic properties according to the loading time of resilient materials. 18 kinds of resilient materials included 4 representative types were measured at the load time of 24hours and 2hours by the method of Korea standard (KS F 2868) measuring the dynamic stiffness and the loss factor of materials under floating floors. As a result, the dynamic stiffness was increased rapidly in case of expandable polystyrene and rubber materials according to the load time, especially before 2 hours. The loss factor was represented that rubber materials with high elasticity are high, and expandable polystyrene, polyester, poly ethylene materials with low elasticity are low.

  • PDF

The Research about Strength Properties of Recycled High Impact Polystyrene (재활용 고강도 폴리스틸렌(HIPS)의 강도 특성에 관한 연구)

  • Kim, Jong-Soon;Kang, Tae-Ho;Lee, Yong-Yeon;Kim, Young-Soo;Kim, In-Kwan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.113-118
    • /
    • 2005
  • Recycle methodology was researched on the HIPS(High Impact Poly Styrene) materials which are used in modern industry widely, For the various mixing ratio between virgin pellets of HIPS and recycled ones, tensile strength and shrinkage ratio were analyzed with injection molding experiments and numerical simulations. In addition, the deviations of dimensional accuracy were observed in accordance with various molding conditions. Molding conditions such as mold and melt temperature were changed by 3 steps. Mixing ratio between virgin pellets of HIPS and recycled ones were under controlled with 15%, 30% and 45%.

  • PDF

Synthesis and Properties of High Impact Polystyrene Nanocomposites Based upon Organoclay Having Reactive Group (반응성 유기화 점토를 이용한 내충격성 폴리스티렌 나노복합재료의 합성 및 물성)

  • Hwang, Sung-Jung;Chung, Dae-Won;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.347-352
    • /
    • 2008
  • High impact polystyrene (HIPS) nanocomposites with organically modified montmorillonite (organoclay) via in situ polymerization were synthesized, and the effects of organoclay incorporation on material properties were investigated. Organoclays having a reactive group, vinylbenzyltrimethyl clay (VBC) and octadecylvinylbenzyldimethyl clay (ODVC), were prepared by the ion-exchange reactions of sodium montmorillonite with vinylbenzyltrimethyl ammonium chloride (VBTMAC) and octadecylvinylbenzyldimethyl ammonium bromide (ODVBDAB), respectively, and a commercial organoclay, $Cloisite^{(R)}$ 10A(C10A), was used for comparison. It was confirmed that the X-ray diffraction (XRD) peak of the nanocomposites prepared by ODVC disappeared, which indicates the exfoliation of silicate layers. On the contrary, the XRD peak of the nanocomposites prepared by C10A shifted to lower angle, indicative of the intercalation of polymer chains into silicate layers. Rheological properties such as storage modulus and complex viscosity increased with increasing organoclay.

Evaluation of the proficiency testing results for brominated flame retardants in high impact polystyrene (고충격폴리스티렌 중 브롬계 난연제 숙련도시험 결과 평가)

  • Kim, Dal-Ho;Ryu, Je-Hoon;Choi, Yong-Wook
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.435-442
    • /
    • 2011
  • Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) which have taken much interest recently due to their potential hazardous effects to human body and ecosystem. Many countries and European community prohibits the usage of certain BFRs in electronics and electronic devices (e.g. RoHS). In this perspectives, Korea Research Institute of Standards and Science (KRISS) has designed and practiced proficiency testing programs based on the ISO/IEC 17043 in order to assist laboratory accreditation activities. The programs for interlaboratory comparisons include congeners of PBDE (PBDE-154, 183, 206, 209) in high impact polystyrene (HIPS). A sample bottle that contains 10 g granular HIPS was distributed to 35 participating laboratories and the test results were calculated by the statistical procedure using z-scores to evaluate performance of each laboratory. The results and the laboratory's performance were discussed.

Product Distribution Characteristics of High-Impact Polystyrene Depolymerization by Pyrolysis (열분해에 의한 내충격 폴리스티렌 해중합 생성물의 분포 특성)

  • Lee, Bong-Hee;Yu, Hong-Jeong;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • To recycle collected high-impact polystyrene (HIPS) wastes as liquid fuel, depolymerization characteristics of HIPS by pyrolysis was studied. The effects of temperature and time on the pyrolysis of HIPS were investigated. The depolymerization temperature and activation energy of HIPS pyrolysis increased with increasing heating rate. In general, conversion and liquid yield gradually increased with pyrolysis temperature and pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and heavy oil according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HIPS pyrolysis was in the order of gasoline》heavy oil〉kerosene〉light oil. Especially 51${\pm}$6 wt% of HIPS treated was obtained as gasoline.

Preparation and Properties of Sufonated High Impact Polystyrene(HIPS) Cation Exchange Membrane Via Sulfonation (술폰화 반응에 의한 High impact polystyrene(HIPS) 양이온교환막의 제조 및 특성)

  • Kim, Yong-Tae;Kwak, Noh-Seok;Lee, Choul-Ho;Jin, Chang-Soo;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • In this study, ion exchange membranes were prepared using high impact polystyrene(HIPS) with various crosslinking and sulfonation time. Degree of sulfonation(DS) of sulfonated HIPS(SHIPS) membrane was increased with sulfonation time and decreased with crosslinking time. The highest value of DS was 66%. Also, water uptake and ion exchange capacity(IEC) of SHIPS membrane were decreased with degree of crosslinking and increased with sulfonation time. Then their values were 35.2% and 1.55 meq/g, respectively. Electrical resistance and ion conductivity of the membranes were showed more excellent value with sulfonation time. The maximum value of electrical resistance and ion conductivity were $0.4\Omega{\cdot}cm^{2}$ and 0.1 S/cm, respectively. It is indicated that the SHIPS membrane has the higher performance compare with Nafion 117. Durability of SHIPS membranes in a organic solvent was increased with increasing crosslinking time. The surface roughness of HIPS membranes were confirmed with SEM that was become uneven surface with progressing sulfonation.

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.