• Title/Summary/Keyword: High frequency resonance type inverter

Search Result 20, Processing Time 0.025 seconds

Design of High Frequency Resonant Inverter Type X-Ray Generator (고주파 공진형 인버터식 X선 발생장치의 설계)

  • Lee, Seong-Gil;Park, Su-Gang;Baek, Hyeong-Rae;Jeong, Su-Bok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.34-39
    • /
    • 2002
  • Most X-ray generator had been used do rectifier type transformer high tension generator which is supplied in a clinical diagnosis. But it is difficult to miniaturize and become light weight. Also, because the ripple rate of tube voltage is high, X-ray generating efficiency is very low. Therefore, it is supplied gradually from abroad being developed high tension generator for inverter type X-ray generator which use semi-conductor switching element for electric power that have high speed switching ability to solved these problem. But, semi-conductor element of big capacity are used by X-ray tube's big consumption power and diffusion is difficult in the small size hospital because production cost is ascending by doing digital control through DSP and product price becomes expensive. Therefore, in this paper, design and manufactured CR type voltage divider for feedback control of tube voltage of high frequency resonance type inverter and high tension transformer for high frequency to apply economical diffusion type X-ray generator which have wide output voltage and load extent. It is Proved do X-ray generator and stability of X-ray tube's output characteristics through an experiment.

A STUDY ON THE RESONANCE TYPE HIGH-FREQUENCY INVERTER USING MOSFET (MOSFET를 사용한 공진형 고주파 인버터에 관한 연구)

  • Lee, Dal-Hae;Oh, Seung-Hoon;Kim, Dong-Hee;Yoo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.405-408
    • /
    • 1990
  • This paper is study on resonance type high-frequency inverter using self turn-off devices. The power conversion circuits adopt full-bridge of voltage-fed type. IN the circuit analysis, resistance load was used to estimate of characteristic.

  • PDF

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

Frequency Follow-up Control System of Resonant Load MOSFET Inverter using PLL (PLL을 이용한 공진부하 MOSFET 인버어터의 주파수 추종제어계)

  • Kim, Joon-Hong;Joong-Hwan kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.272-277
    • /
    • 1986
  • The system that follows to the resonance frequency of high frequency MOSFET inverter and varies according to the changes of load characteristics is proposed. Also we suggested a method how to select the resonant load type between series and parallel circuit for a given inverter type. It leads to the conclusion that in the case of high impedance loads, parallel resonant circuits are preferable, on the other hand, for low impedance loads, series resonant circuits are more preferable. For frequency tracking, a PLL circuit is used as main control element to detect the phase difference of current and voltage of load. The realized apparatus composed of control circuit and voltage type full-bridged MOSFET elements as main parts of inverter. A stable frequency follow-up characteristics are obtained for 1.2MHz, 1.5KW high frequency output and power is always supplied to the load with unity power factor.

  • PDF

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

A study on analysis of characteristics of Current-fed type High-Frequency Inverter with separate resonance capacitor (분할 공진 Capacitor를 갖는 전류형 고주파 인버어터의 특성해석에 관한 연구)

  • Lee, Bong-Seop;Ro, Chae-Cyun;Jung, Won-Yeung;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.704-706
    • /
    • 1993
  • This paper, introduces a Current-fed type High-Frequency Inverter with self turning devices. By replacing Thyrisors used for power source of heat treatment with high speed switching element, MOSFET in current type Inverter, the proposed Inverter makes high speed performance with several 100kHz. This paper also depicts some operating principles of the proposed circuits and general operating characteristics. Steady state solution on state variables in analysis of the proposed circuit is described generally by using normalized parameter and its characteristics depending on separate ratio(n) is also shown.

  • PDF

Design of High Frequency Resonant High-tension Transformer in Inverter Type X-Ray Generator (인버터식 X선발생장치용 고주파 공진형 고압변압기 등의 설계)

  • Lee, Seong-Kil;Choi, Sung-Kwan
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.5-11
    • /
    • 2001
  • Most of X-ray generator had used rectifier type transformer with high tension generator which is supplied in a clinical diagnosis. Because the ripple rate of tube voltage is high, X-ray generating efficiency is very low. In these days, high tension generator for inverter type X-ray generator is being supplied from a broad which uses semi-conductor switching element for the electric power that have a high speed switching ability to solve these problem. But, semi-conductor element with large capacity is used with X-ray tube's large consumption power and diffusion is difficult in the small size hospital because production cost is going up by doing digital control through DSP. Therefore, this paper designed and manufactured CR type voltage divider for feedback control of tube voltage with high frequency resonance type inverter and for high tension transformer with high frequency. It was to make economical diffusion type X-ray generator which has wide output voltage and load extent. It was preyed that the X-ray generator had the stability of X-ray tube's output characteristics.

  • PDF

Resonant-type Electronic Ballast for HID Lamp (HID 램프용 공진형 전자식 안정기)

  • Lee, Seong-Hui;Lee, Chi-Hwan;Gwon, U-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.530-535
    • /
    • 2001
  • Resonant-type electronic ballast for a metal halide discharge(MHD) lamp is proposed and implemented for 400W MHD lamp. HID lamps have good color rendition, long life and good focusing capability but they have flickers by acoustic resonance when driven at high frequency. A new control method is employed to remove acoustic resonance related instability in HID lamp. By using the amplitude modulation, a spread spectrum effect is employed on the ballast. The control loop of resonant inverter is analyzed and a current is designed. The ballast consists of a power factor controller, an half-bridge resonant inverter, a simple ignitor and an integrator with OP-amps. The experimental results show the good performance as PF 0.93, ballast loss 22W at output 400W and the conducted EMI level is below 60dBuV.

  • PDF

The New Active Voltage Clamp ZVS-PWM Resonant High-frequency Inverter (새로운 액티브 전압 클램프 ZVS-PWM 공진 고주파 인버터)

  • Ahn, Yong-Wie;Kim, Hong-Shin;Mun, Sang-Pil;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.188-193
    • /
    • 2017
  • In this paper, a ZVS-PWM high-frequency inverter with a PWM control function is applied to commercial system 220[Vrms], and a resonator type ZVS-PWM high-frequency inverter circuit with a fixed-two methods were proposed. The parameters of the transformer model equivalent circuit of a copier fixing device, which is an essential element in the parameter optimization of the proposed circuit, are obtained by using a high-frequency amplifier and its frequency characteristics are described. The proposed method compared to the existing single-ended ZVS-PFM high frequency inverter can suppress the voltage and current peak value of the power semiconductor switching device and reduce the switching loss. The efficiency of the proposed method itself is 98[%] at rated power output. Also, the efficiency of 96[%] can be obtained even at low output, so that the proposed high frequency inverter is very efficient inverter. The total efficiency from the commercial AC input to the inverter output is 93[%] at rated, which is considered efficient for use in copying machines. In addition, the diode bridge loss accounts for the largest portion of the overall system efficiency distribution. On the other hand, the nonparallel filter has a very low loss.

The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL (음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.