• Title/Summary/Keyword: High frequency model

Search Result 2,182, Processing Time 0.034 seconds

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.

Model Order Reduction for Mid-Frequency Response Analysis (중주파수 응답해석을 위한 축소 기법)

  • Ko, Jin-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.135-138
    • /
    • 2009
  • Most of the studies use model order reduction for low frequency (LF) response analysis due to their high computational efficiency. In LF response analysis, one of model order reduction, algebraic substructuring (AS) retains all LF modes when using the modal superposition. However, in mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response analysis should consider low truncated modes to improve the computational efficiency. The current work is focused on improving the computational efficiency using a AS and a frequency sweep algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the presented method is superior to a conventional method.

  • PDF

A Study on the Squeal Noise Instability Analysis on Caliper Brake (캘리퍼 브레이크 스퀼 소음의 불안정성 해석에 관한 연구)

  • Lee, Junghwan;Kim, Seonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.957-965
    • /
    • 2013
  • This paper deals with analytical methods for low frequency and high frequency brake squeal noise on brake-rear caliper. In order to improve low frequency and high frequency squeal noise, we take survey caliper bracket shape parameters and housing shape parameters. Besides, using the combination of bracket and housing parameter were surveyed. Thus, using the combination of bracket Alt_05 and housing Alt_45 specifications, instability analysis and brake dynamo test were carried out. Based upon the two models, low and high frequency squeal noise of base model were improved. But, for 6.0 kHz frequency noise, which is not improved, it needs to additionally study on instability analysis and combination of the other brake components.

Analytical Approach of Circulating Current Mitigation Effect using Coupled Inductor in Parallel Interleaved Converters (병렬 Interleaved 컨버터에서 일반화된 순환전류 제어 방법)

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.470-471
    • /
    • 2010
  • In this paper, the coupled inductor with three branches in two interleaved converter are analyzed to effectively suppress the high frequency circulating current since the circulating current controller cannot mitigate the high frequency circulating current. As a result, the novel averaged model including the coupled inductor with zero sequence components is developed for reducing the low and high frequency circulating current simultaneously.

  • PDF

A Study on Characteristics Analysis of Winding Method for Common-Mode Choke (권선 방식에 의한 공통 모드 초크의 특성해석에 관한 연구)

  • Won, Jae-Sun;Kim, Hee-Seung;Kim, Jong-Hae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • This paper presents the intra capacitance modeling according to the winding method and section bobbin for CM choke capable of the EMI attenuation of broad bands from lower frequency bands to higher frequency bands and high frequency type common-mode choke capable of the EMI attenuation of high frequency band used in the EMI Block of LED-TV SMPS. In case of high frequency type CM choke, it can be explained the parasitic capacitance of A type and section bobbin type winding methods among them is much smaller than the other. The first resonant frequency of the proposed CM choke tends to increase as the parasitic capacitance becomes small and its impedance characteristics also show improved performance as the first resonant frequency increases. In the future, the CM chokes of high frequency type show it can be practically used in not only LED/LCD-TV SMPS but also several applications such as LED Lighting, Adapter and so on.

A PSpice Model for the Electrical Ballast of HID Lamps (전자식 안정기를 위한 HID Lamp 시뮬레이션 모델)

  • 지윤근;김남준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The thesis is used by PSpice circuit model to the characteristics of a fluorescent lamp modified form of he classical Cassie and Mayr equations in order to show the characteristics of HID(High-Intensity Discharge) Lamp. This is useful for applying high-frequency electric ballast for HID Lamp, and show that the result of experimentations and simulations, such as lamp rating, input voltage, high-frequency electric ballast which is using the ABM circuit model of the low pressure sodium lamp, come to the voltage and current wave.

Power Loss Characteristics according to Winding Method of High Frequency Transformer (고주파 트랜스포머의 권선기법 따른 손실특성)

  • Kim, Il-Nam;Yoon, Shin-Yong;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.49-51
    • /
    • 2004
  • This paper researched the power loss characteristics according to winding method of high frequency transformer. Power loss was analyzed by PExprt using FEM software. The ferrite core model for analysis be used the EE type. Transformer model objected type applied to flyback converter. Therefore, analysis result was obtained the many parameter of DC, AC resistance, leakage inductance, copper loss, core loss, and temperature etc.

  • PDF

The Propagation Delay Model of the Interconnects in the High-Speed VLSI circuit (고속 VLSI회로에서 전송선의 지연시간 모델)

  • 윤성태;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.975-978
    • /
    • 1999
  • The transmission line effects of IC interconnects have a substantial effect on a hish-speed VLSI circuit performance. The effective transmission lime parameters are changed with the increase of the operation frequency because of the skin of the skin effect, proximity effect, and silicon substrate. A new signal delay estimation methodology based on the RLC-distributed circuit model is presented [2]. The methodology is demonstrated by using SPICE simulation and a high-frequency experiment technique.

  • PDF

Analysis of Multi-Variable Control using Model Based Compensator (Model Based Compensator를 이용한 다변수 제어 분석)

  • Jung, Ji-Hyeon;Lee, Woo-Min;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.564-569
    • /
    • 2000
  • Model Based Compensator(MBC) is recently used for the analysis of multi-variable control in frequency domain. Target loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery will be continued in frequency domain until the plant with MBC comes close to the target loop. In this study, the technique using MBC is applied to the elevator vibration control system. It is found that this technique is very effective to control the vibration system.

  • PDF