• Title/Summary/Keyword: High frequency model

Search Result 2,172, Processing Time 0.03 seconds

The forecasting evaluation of the high-order mixed frequency time series model to the marine industry (고차원 혼합주기 시계열모형의 해운경기변동 예측력 검정)

  • KIM, Hyun-sok
    • The Journal of shipping and logistics
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • This study applied the statistically significant factors to the short-run model in the existing nonlinear long-run equilibrium relation analysis for the forecasting of maritime economy using the mixed cycle model. The most common univariate AR(1) model and out-of-sample forecasting are compared with the root mean squared forecasting error from the mixed-frequency model, and the prediction power of the mixed-frequency approach is confirmed to be better than the AR(1) model. The empirical results from the analysis suggest that the new approach of high-level mixed frequency model is a useful for forecasting marine industry. It is consistent that the inclusion of more information, such as higher frequency, in the analysis of long-run equilibrium framework is likely to improve the forecasting power of short-run models in multivariate time series analysis.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model (동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교)

  • Lee, Dae Hyeok;Oh, Raegeun;Choi, Jee Woong;Kim, Seongil;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.297-303
    • /
    • 2021
  • When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

Experimental Model of Frequency-Variant Transmission Line Parameter for High-Speed Signal Propagation Characterization (고속 신호의 전파 특성화를 위한 주파수 종속 전송선 파라미터의 실험적 모델)

  • Kim, Hyewon;Eo, Yungseon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • In this paper, an experimental circuit model for an accurate high-frequency characterization of transmission line is proposed. Inherent resonance effects during measurements make it difficult to determine characteristic impedance and propagation constant at the resonance frequencies corresponding to the line length. Thus, resonance-effect-free transmission line parameter determination technique based on the physical insight and theory is proposed. Then, by using the parameters high-frequency circuit model is proposed for high-speed signal propagation characterization. The proposed frequency-variant transmission line model is verified with measurement and it can be usefully exploited in high-speed signal propagation characterization.

A study on design method for high frequency transformer with high inulation voltage (높은 절연전압을 갖는 고주파 변압기 설계 방법에 관한 연구)

  • Kang, Kyoung Pil;Kim, Ho-Sung;Cho, Jintae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.27-28
    • /
    • 2017
  • In this paper, design method for a high frequency transformer with high insulation is presented. The insulation performance of the high frequency transformer is determined by the distance between primary and secondary windings, and the characteristics of dielectric material. For the voltage strength safty, a high frequency transformer model is designed. By using computer simulation, the transformer model is evaluated.

  • PDF

Characterization of high performance CNT-based TSV for high-frequency RF applications

  • Kannan, Sukeshwar;Kim, Bruce;Gupta, Anurag;Noh, Seok-Ho;Li, Li
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • In this paper, we present modeling and characterization of CNT-based TSVs to be used in high-frequency RF applications. We have developed an integrated model of CNT-based TSVs by incorporating the quantum confinement effects of CNTs with the kinetic inductance phenomenon at high frequencies. Substrate parasitics have been appropriately modeled as a monolithic microwave capacitor with the resonant line technique using a two-polynomial equation. Different parametric variations in the model have been outlined as case studies. Furthermore, electrical performance and signal integrity analysis on different cases have been used to determine the optimized configuration for CNT-based TSVs for high frequency RF applications.

An Equivalent Plate Model for The High-Frequency Dynamic Characteristics of Cylindrical Shells (원통형쉘의 고주파동적특성을 고려한 등가평판 모델링)

  • 이준근;이우식;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.402-407
    • /
    • 1997
  • For cylindrical shells, the closed-form solutions are limited only to the cases with special boundary and/or loading conditions. Though the finite element method is certainly a powerful solution approach for the general structural dynamics problems, it is known to provide reliable solutions only in the low frequency region due to the inherent high sensitivities of structural and numerical modeling errors. Instead, the spectral element method has been proved to provide extremely accurate dynamic responses even in the high frequency region. Since the wave characteristics of a cylindrical shell becomes identical to that of a flat plate as the frequency increases, an equivalent plate model (EPM) representing the high-frequency dynamic characteristics of a cylindrical shell is introduced herein. The EPM-based spectral element analysis solutions are compared with the known analytical solutions for the corresponding cylindrical shell to confirm the validity of the present modeling approach.

  • PDF

Frequency-Variant Power and Ground Plane Model for Electronic Package (패키지의 주파수 의존형 파워 및 그라운드 평판 모델)

  • 이동훈;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.385-388
    • /
    • 1999
  • A new frequency-variant equivalent circuit model of power/ground plane is presented. The equivalent circuit is modeled with grid cells. The circuit parameters of each cell were extracted by using Fasthenry. To verify the developed circuit model, its s-parameters are compared with the measured s-parameters 〔2〕 and the full-wave simulation-based s-parameters. Consequently, it is shown that our frequency-variant equivalent circuit model can accurately predict imperfect ground effects under the high frequency operation of electronic package.

  • PDF

High frequency measurement and characterization of ACF flip chip interconnects

  • 권운성;임명진;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.146-150
    • /
    • 2001
  • Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. S-parameters of on-chip and substrate were separately measured in the frequency range of 200 MHz to 20 GHz using a microwave network analyzer HP8510 and cascade probe. And the cascade transmission matrix conversion was performed. The same measurements and conversion techniques were conducted on the assembled test chip and substrate at the same frequency range. Then impedance values in ACF flip-chip interconnection were extracted from cascade transmission matrix. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of SiO$_2$filler to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. High frequency behavior of metal Au stud bumps was investigated. The resonance frequency of the metal stud bump interconnects is higher than that of ACF flip-chip interconnects and is not observed at the microwave frequency band. The extracted model parameters of adhesive flip chip interconnects were analyzed with the considerations of the characteristics of material and the design guideline of ACA flip chip for high frequency applications was provided.

  • PDF