• Title/Summary/Keyword: High frequency/High efficiency

Search Result 1,659, Processing Time 0.029 seconds

Topology of a soft switching high frequency insulatied PWM DC-DC converter (고주파 절연형 소프트 스위칭 PWM DC-DC 컨버터의 토폴로지)

  • Lee, S.H.;Kwon, S.K.;Suh, K.Y.;Lee, H.W.;Mun, S.P.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.383-386
    • /
    • 2005
  • In this paper, proposed new partial resonance ZCS PWM controlled High frequency insulated Full-bridge DC-DC converter not using exciting current of high frequency transformer. It is compared with the existing principles in characteristics. It also realizes a widely stabilized ZVS operating using new ON-OFF control method at synchronized power rectification MOSFET of high frequency insulated transformer secondary. Besides, it is brought over 97[%] measurement efficiency by proposed DC-DC converter.

  • PDF

Uninterruptible power supply using the secondary auxiliary soft switching high frequency insulating (2차측 보조 소프트 스위칭 고주파 절연형 무정전전원장치)

  • Kim, J.Y.;Suh, K.Y.;Lee, H.W.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1413-1415
    • /
    • 2005
  • In paper, propose new partial resonance ZCS PWM controlled High frequency insulating Full-bridge DC/DC converter not using exciting current of high frequency transformer. It is compared with the existing principles in characteristics. It also realizes a widely stabilized ZVS operating using new On-Off control method at synchronized power rectification MOSFET of high frequency insulating transformer secondary. Finally, it is brought over 97[%] measurement -efficiency by proposed DC-DC converter. It is proved effectiveness of new methods using DC UPS PWM rectifier as switching power.

  • PDF

Comparison and Analysis of the Soft-Switching ZVT Converters in Efficiency Using PSPICE (PSPICE를 이용한 소프트 스위칭 ZVT컨버터 효율 비교와 분석)

  • Kim Yoon-Ho;Kim Su-Hong;Lee Kang-Hee;Kim Seung-Mo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.364-369
    • /
    • 2002
  • Presently, a high frequency switching technique is used for a converter design to reduce its size and weight. However an increased switching frequency introduces a high switching loss. To the reduce switching loss, soft switching techniques using ZVS and ZCS are applied. It is very important to improve efficiency. However In general to develop new converter circuits, the efficiency and other performance parameters can be determined after design, implementation and experiments. The idea in this paper is to determine and predict efficiency and other operating characteristics without realization and experiments. Thereby a complex design and implementation can be avoided. PSPICE is used as a simulation tool. This is verified by comparing simulation and experiments results of the two different soft switching converters.

  • PDF

Extremely high efficiency wireless power transfer system for EV charger (전기자동차 충전을 위한 고효율 무선전력전송 시스템)

  • Moon, SangCheol;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • This paper proposes a high efficiency wireless power transfer system with an asymmetric 4-coil resonator. It presents a theoretical analysis, an optimal design method, and experimental results. In the proposed asymmetric 4-coil system, the primary side consists of a source coil and two transmitter coils which are called intermediate coils, and in the secondary side, a load coil serves as a receiver coil. In the primary side, two intermediate coils boost the apparent coupling coefficient at around the operating frequency. Because of this double boosting effect, the system with an asymmetric 4-coil resonator has a higher efficiency than the conventional symmetric 4-coil system. The prototype operates at 90 kHz ofswitching frequency and has 200 mm of the power transmission distance between the primary side and the secondary side. An AC-DC overall system efficiency of 96.56% has been achieved at 3.3 kW of output power.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

Non-Dissipative Snubber for High Switching Frequency and High Power Density Step-Down Converters (고속 스위칭 및 고 전력밀도 강압형 컨버터를 위한 무손실 스너버)

  • Shin, Jung-Min;Park, Chul-Wan;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a non-dissipative snubber for reducing the switching losses in the step down converter is proposed. The conventional step down converter, e.g., buck converter, suffers from serious switching losses and consequentially heat generation because of its hard switching. Thus, it is unsuitable for high switching frequency operation. Reduction of the reactive components' size, such as an output inductor and capacitor, is difficult. The proposed snubber can slow down the increasing current slopes and switch voltage at turn-on and turn-off transients, thereby significantly reducing the switching loses. Additionally, the slowly increasing current during switch turn-on transition, can effectively solve the output rectifier diode reverse recovery problem. Therefore, the proposed non-dissipative snubber not only leads to the efficiency of converter operation at high switching frequency but also reduces the reactive components size in proportion to the switching frequency. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 150 W, 1 MHz prototype are presented.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

A Study on Mechanical Property and Fatigue Crack Growth Behavior of Surface-Hardened SM53C Steel (표면 경화된 SM53C의 기계적 특성 및 피로균열진전 거동해석에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun;Jeon, Hyun-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.44-52
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The influence of high-frequency induction treatment on fatigue limit was experimentally examined with the specialfocus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Also, the shape of hardening depth, hardened structure, hardness, and fatigue-fracture characteristics of SM53C composed by carbon steel are also investigated.