• Title/Summary/Keyword: High fracture toughness

Search Result 412, Processing Time 0.025 seconds

Fracture Behavior and Mechanical properties of WC-Co Subjected to Thermal Shock (WC-Co의 열충격 후 파괴 현상과 기계적 성질)

  • ;Joh
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 1990
  • WC-Co composites are widely used as cutting or drilling tools because of their high hardness, strength, and fracture toughness. The working temperature is, however, generally in the range of 300-$700^{\circ}C$ so thermal shock fracture of WC-Co can occur. In this study, the strength, fracture toughness and fracture surface of 16wt% Co bonded tungsten carbide composites before and after thermal shock were observed.

  • PDF

Fracture Toughness of IC Molding Compound Materials(II) (IC 몰딩 콤파운드 재료의 파괴 인성치(II))

  • 김경섭;신영의
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.353-357
    • /
    • 1998
  • Cracking problem of Epoxy Molding Compound(EMC) is critical for the reliability of the plastic package during temperature cycling and IR-reflow condition. Fracture toughness of EMC, which is defined as the resistance of EMC to the crack propagation, is a useful factor in ht estimation of EMC against package crack. Thus, development of EMC having high fracture toughness at a given loading condition would be important for confirming the integrity of package. In this study, toughness of several EMC was measured by varying the test conditions such as temperature, loading speeds, and weight percent of filler in order to quantify the variation of toughness of EMC under various applicable conditions. It was found from the experiments that toughness of all EMC has following trends, i.e., it rapidly decreases over the glass transition temperature, remains almost same or little decreases below $0^{\circ}C$. It decreases with the growth of cross head speed in EMC and the weight percent of filler as the degree of brittleness of EMC increases with the amount of filler content.

  • PDF

Interlaminar Fracture Toughness of GFRP Composites for Insulating Structure of Magnet System (전자석 시스템의 절연 구조물용 유리섬유강화 복합재료의 층간 파괴인성)

  • Song, Jun Hee;Kim, Hak Kun;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.754-759
    • /
    • 2011
  • In this study, the interlaminar fracture behaviors of laminated GFRP composites were investigated, and the results could be used for damage tolerance design based on fracture mechanics. Three types of laminated GFRP composites that can be used as high voltage insulating materials in magnet systems were fabricated in order to study the interlaminar fracture behavior according to the molding process. The values of interlaminar fracture toughness for the VPI, prepreg, and HPL laminate were $1.9MPa{\cdot}^{1/2}$, $1.7MPa{\cdot}^{1/2}$, and $2.2MPa{\cdot}^{1/2}$, respectively. HPL laminate showed the best fracture resistance. The failure modes of HPL and VPI were similar to that of an adhesive joint, and prepreg laminates showed partial cohesive failure mode due to internal voids.

EFFECT OF RESIN MATRIX ON DEGREE OF CONVERSION AND FRACTURE TOUGHNESS OF DENIAL COMPOSITES (기질레진의 조성에 따른 복합레진의 물리적 성질에 관한 연구)

  • Lee, Yun-Shin;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Current composites are made with dimethacrylate monomers and silane-treated silica microfillers, either alone or with silane treated glass fillers The main reasons for clinical failure of dental composites are secondary caries, wear and fracture. Most of practitioner want to get a composite which is more tougher under occlusal stress, less polymerization contraction, and better handling properties in application clinically. The aim of this study was to investigate the influence of resin matrix with various flows on the physical proper-ties such as fracture toughness and degree of conversion of the experimental resins. It was hypothesized that flexible or tough resin composites can be designed by judicious choice of monomer composition Various flow resin matrices containing Bis-GMA, UDMA, and TEG-DMA were made by altering the pro-portion of the monomers. After the unfilled resins were light-cured for different light intensity, the fracture toughness(K$_{1c}$) was measured according to ASTM standard using the single edge notched geometry, and degree of conversion(DC) was measured by FTIR. And experimental composites were formulated with variations in the proportion of silanated quartz and strontium glass fillers as 60, 75, and 77wt%. Also, the physical properties of composites with various filer contents were evaluated as same manner. All resulting data were compared by ANOVA/Tukeys test at 0.05 level. The results were as follows; 1. The degree of conversion of high flow resin containing less Bis-GMA was higher than that of low flow unfilled resin 2. While the degree of conversion of unfilled resin was increased according to light intensity for polymerization, there was no significant increase with moderate and high light intensity. Also, the fracture toughness was not increased by high light intensity. 3. The fracture toughness was high in the low flow unfilled resin containing higher contents of Bis-GMA. 4. There was a significant increase for fracture toughness and a tendency for degree of conversion to be reduced when the content of fillers was increased. 5. In the experimental composites, the flow of resin matrix did not affected on the fracture toughness, even, which was decreased as increase of viscosity. These results showed that the physical properties of a dental composite could be attributed to the flow of resin matrix with relative content of monomers. Specific combination of resin monomers should be designed to fulfil the needs of specific indication for use.

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.180-185
    • /
    • 2014
  • The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

Optimization of Electrical Conductivity and Fracture Toughness in $Y_2O_3-Stabilized$ $ZrO_2$ through Microstructural Designs (이트리아 안정화 지르코니아에서 미세조직 설계에 따른 전기전도도와 파괴인성치의 적정화)

  • 강대갑;김선재
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.772-776
    • /
    • 1994
  • Using two kinds of ZrO2 powder stabilized by 8 mol% and 3 mol% of Y2O3 several microstructures were designed; two single composition specimens of 8 mol% Y2O3-ZrO3 and 3 mol% Y2O3-ZrO2 and five mixture specimens with multi-layered structure and particulate mixture structure at a mixing ratio of 1:1 by weight. Electrical conductivities were measured from 250 to 75$0^{\circ}C$ in air using an impedance analyser, and fracture toughness at room temperature using the indentation method. Making the mixture structures was more effective in enhancing fracture toughness than electrical conductivity. At low temperatures 3 mol% Y2O3-ZrO2 showed the highest values in both electrical conductivity and fracture toughness, while at high temperature the specimens of alternately stacked planar and coarse granulated structure were most favorable.

  • PDF

Effects of Dissolved Ca from Plaster Mold During Slip Casting on the Microstructure and Fracture Toughness of Sintered Alumina (석고 몰드에서 용출된 Ca이 주입성형 알루미나 소결체의 미세구조 및 파괴인성에 미치는 영향)

  • 박재관;임동기;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.1019-1025
    • /
    • 1991
  • The effect of dissolved Ca ion from plaster mold during slip casting on the microstructure and fracture toughness of high-purity sintered alumina were investigated. When the alumina slip containing 1000 ppm MgO was casted on a calcined alumina mold, the sintered compact had a homogeneous microstructure with equiaxed grains. However, when the same slip was casted on a plaster mold, the sintered compact consisted of the mixture of equiaxed and elongated grains. This inhomogeneous microstructure was also observed in the sintered alumina doped with 100o ppm MgO and 100 ppm CaO whose compact was prepared on the calcined alumina mold indicating that the inhomogeneity was caused by CaO. It was found that the specimen containing both MgO and CaO had higher fracture toughness than that containing MgO only. The enhanced fracture toughness by CaO is probably due to the crack deflection along the boundaries of the elongated grains.

  • PDF

Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type (섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가)

  • Roh, Jong-Chan;Kim, Gyu-Yong;Kim, Hong-Seop;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF

Acoustic Emission and Indentation Fracture Method for the Engineering Ceramics (세라미스 파괴인성평가에 있어서 IF법과 AE)

  • 김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • The fracture toughness of ceramics can be measure by such various methods as DT (double torsion), CN (chevron notch) etc. But, the application of these methods to the engineering ceramics is very difficult because of its very high hardness. So, IF (indentation fracture) method is generally used for the evaluation of fracture toughness of ceramics. The Median crack induced by the sharp Vickers indenter was compared with the detected AE (acoustic emission) signal. On the silicon nitride ceramics, the AE test results agree fairly well with the median crack occurance and growth process. But, on the alumina, very many complicated crack signals were detected besides median crack. It can be considered that the IF methods must be used in limited engineering ceramics materials.

  • PDF