Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.754

Interlaminar Fracture Toughness of GFRP Composites for Insulating Structure of Magnet System  

Song, Jun Hee (Dept. of Mechanical & Automotive Engineering, Jeonju University)
Kim, Hak Kun (National Fusion Research Institute)
Kim, Yonjig (Division of Mechanical Design Engineering, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 754-759 More about this Journal
Abstract
In this study, the interlaminar fracture behaviors of laminated GFRP composites were investigated, and the results could be used for damage tolerance design based on fracture mechanics. Three types of laminated GFRP composites that can be used as high voltage insulating materials in magnet systems were fabricated in order to study the interlaminar fracture behavior according to the molding process. The values of interlaminar fracture toughness for the VPI, prepreg, and HPL laminate were $1.9MPa{\cdot}^{1/2}$, $1.7MPa{\cdot}^{1/2}$, and $2.2MPa{\cdot}^{1/2}$, respectively. HPL laminate showed the best fracture resistance. The failure modes of HPL and VPI were similar to that of an adhesive joint, and prepreg laminates showed partial cohesive failure mode due to internal voids.
Keywords
composites; fracture toughness; mechanical properties; GFRP;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Y. Wang and D. Zhao, Composites 26, 115 (1995).   DOI   ScienceOn
2 R. W. Messler Jr., Joining of Advanced Materials, Butterworth-Heinemann, 107-141 (1993).
3 Y. Kim, Transactions of KSME A-32, 788 (2008).
4 T. L. Anderson, Fracture Mechanics, CRC Press, 485-496 (2005)
5 R. Velmurugan and S. Solaimurugan, Composites Sci. and Tech. 67, 61 (2007).   DOI   ScienceOn
6 G. S. Lee, D. P. Ivanov, H. L. Yang, Hogun Jhang, J. Y. Kim, D. K. Lee, K. I. You, H. K. Kim, J. S. Bak, M. Kwon, and J. H. Han, ITC 2001(International Toki Conference), Japan (2001).
7 John R. Last, John S. Jeskins, Alan S. Kaye, and Valeria Riccardo, IEEE Transaction on Applied Superconductivity 12, 1238 (2002).   DOI   ScienceOn
8 H. K. Kim, J. W. Sa, H. T. Kim, C. H. Choi, H. L. Yang, K. R. Park, K. S. Lee, and J. S. Bak, Korean J. Physical Society 49, S254 (2006).
9 W. L. Bradley, Key Eng. Mater. 37, 161 (1989).   DOI
10 D. Hunston and R. Dehl, Soc. Manufacturing Eng. EM87-355 (1987).
11 A. B. Pereira, de Morais, M. F. S. F. de Moura, and A. G. Magalhaes, Composites Part A 36, 1119 (2005).   DOI   ScienceOn
12 A. B. Pereira and A. B. de Morais, Composites Science and Technology 64, 2261 (2004).   DOI   ScienceOn
13 Michael C. Y. Niu, Composite Airframe Structures, Conmilit Press Ltd., (1993).
14 ASTM Standard D5045, ASTM, West Conshohocken, PA, USA (2007).
15 J. W. Davis, J. A. McCarthy, and J. N. Schurb, Mater. Des. Eng. 87-91 (1964).