• Title/Summary/Keyword: High flux system

Search Result 750, Processing Time 0.024 seconds

An Experimental Study on the Spray Characteristics of a Rotating Fuel Nozzle of a Slinger Combustor for Different Flow Rates and Rotating Speeds (슬링거 연소기 회전연료노즐의 유량과 회전수에 따른 분무특성에 대한 실험적 연구)

  • Shim, Hyeon-Seok;Bae, Jonggeun;Kim, Jupyoung;Kim, Shaun;Kim, Donghyun;Ryu, Gyongwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.59-70
    • /
    • 2021
  • An experimental study was conducted to observe the spray characteristics for different flow rates and rotating speeds of a rotating fuel nozzle of a slinger combustor. The water spray ejected from the nozzle orifice was visualized using a high-speed camera and a light source. It was confirmed that the atomization was improved, as the flow rate decreased and rotating speed increased. The characteristic maps for the spray characteristics and performance parameters showed that the aerodynamic Weber number and the liquid-air momentum flux ratio were associated with the liquid primary breakup, and the liquid-air momentum flux ratio and Rossby number were closely correlated with the liquid ejection mode.

An experimental study on the liquid rocket combustion chamber cooling (액체로켓 연소실 냉각에 관한 실험적 연구)

  • Kim, B.H.;Park, H.H.;Jeong, Y.G.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • To protect combustion chamber from high temperature combustion gas, regenerative cooling is used for most liquid rocket engine. Although regenerative cooling is the most effective way to protect the chamber from high heat flux, realization of this system requires detail analysis, manufacturing technique and high cost. To demonstrate the possibility of applying regenerative cooling to a real rocket engine, the hot fire test has been carried out for the sub-scale liquid rocket with the water cooling system. The main purpose of the test is to identify the problem area of design, safety and cost effective manufacturing technique. The coolant passage was 3 mm in width and wall thickness was 1 mm with stainless steel. Maximum combustion time and pressure were 60 seconds and 400 psi, respectively. The flow rate of coolant was reduced gradually from 2 kg/s to 0.12 kg/s throughout firing test, combustion chamber was visually examined and no dwfect was observed.

  • PDF

The Assembly and Test of Pressure Vessel for Irradiation (조사시험용 압력용기의 조립 및 시험)

  • Park, Kook-Nam;Lee, Jong-Min;Youn, Young-Jung;June, Hyung-Kil;Ahn, Sung-Ho;Lee, Kee-Hong;Kim, Young-Ki;Kennedy, Timothy C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

The development of high-performance PRO module and effects of operating condition on the performance of PRO module (고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향)

  • Han, Man Jae;Sim, Yeonju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Development of power system and degradation technology using arc plasma for the degradation of non degradable waste water (플라즈마를 이용한 액상 폐기물 처리 전원장치 개발 및 분해 기술 개발)

  • Han, Chul-Woo;Kim, June-Sung;Park, Sang-Hoon;Hwang, Lee-Ho;Rhee, Byong-Ho;Kang, Duk-Won;Kim, Jin-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1900-1902
    • /
    • 2004
  • The degradation systems of non degradable waste water consist of the arc plasma torch, power supply, a feeder of liquid waste and reactors. Output of stable plasma torch, suitable air flux, microscopic atomizing state of waste water and long reaction section must be to degrade waste water more efficiently. In this paper, we are designed the stable power system, the microscopic atomizing state of waste water and the efficient reactors to satisfy various conditions. Non degradable wast water used in this work was $Na_2$EDTA of 1.0 mol. The concentration of $CO_2$ and EDTA was analyzed using GC (Gas Chromatography) and HPLC (High Performance Liquid Chromatography). In the result show that $CO_2$ concentration was about 96% and EDTA was degraded approximately 96%.

  • PDF

A Study on the Magnetic Properties of Ceramics Superconductors for Simpllified Testing System (간소화 시스템적용을 위한 자기특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.339-341
    • /
    • 2012
  • The high Tc superconductor of YBCO system with the nominal composition of precursor was prepared from mixed powders of $Y_2O_3$, $BaCO_3$, CuO and $TiO_2$ by the thermal pyrolysis method. The effect of $TiO_2$ doping to Y based ceramics superconductors fabricated by the thermal pyrolysis reaction, to investigate the effect of the dopant on the superconductivity. The voltage appearing across the field-cooled HTS sample increased with external magnetic field. The improvement of critical current property as well as the mechanical property is important for the application. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pining center inside the superconductor. We simply added $TiO_2$ to starting materials to dope $TiO_2$ and observed an increase in the trapped field and the critical current density up to at least 5 wt % $TiO_2$. The $TiO_2$ was converted to fine $BaTiO_3$ particles which were trapped in YBCO matrix during the sintering process. We observed a peak effect of Jc that can be attributed to $TiO_2$ doping and results suggest that introducing a proper amount of pinning centers can significantly enhance current density.

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF