• 제목/요약/키워드: High energy photon

검색결과 238건 처리시간 0.03초

Physical and Microbiological Approach in Proving the Identity of Gamma-irradiated Different Teas

  • Kausar, Tusneem;Kim, Byeong-Keun;Kim, Dong-Ho;Kwon, Joong-Ho
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Photostimulated luminescence (PSL), thermoluminescence (TL), electron spin resonance (ESR), and direct epiflourescent filter technique/aerobic plate count (DEFT/APC) were applied to detect dried green, black, and oolong teas irradiated between 0-10 kGy. Teas irradiated at 2.5 kGy and higher showed over 5000 photon counts/60 sec, while non-irradiated teas yielded 650-1000 photon counts/60 sec. TL glow curves for minerals separated from teas were detected at about $300^{\circ}C$ with low intensity in non-irradiated samples, whereas around $150^{\circ}C$ with high intensity in all irradiated samples. Ratio of $TL_1/TL_2$ based on re-irradiation step, showing lower than 0.1 and higher than 1.44 for non-irradiated and irradiated samples, respectively, enhanced reliability of TL results. ESR measurements for irradiated teas showed signals specific to irradiation. Log DEFT/APC ratio increased with irradiation dose; this result could be applied to identify irradiated tea samples.

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Magnetic field imperfections of in-vacuum undulator on PLS-II beam dynamics

  • Chunjarean, Somjai;Hwan, Shin-Seung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2011
  • Many research applications in basic sciences and biology such as protein crystallography require hard x-rays in the range of 3-20 keV with high brightness. A medium energy storage ring as PLS-II with a beam energy of 3 GeV can meet such high photon energies. In-vacuum undulators (IVU) with a period length of 20 mm and a peak field of 0.97 T are used in the PLS-II ring to produce such X-rays in the fundamental or higher harmonics. Due to the many poles and high fields, insertion devices like wigglers and undulators have a significant impact on the stability of the electron beam with potential degradation of beam quality and life time. Therefore, nonlinear fields must be determined by measurement and evaluated as to their impact on beam stability. Specifically, transverse field roll-off can be a serious detriment to injection in top-up mode and must be corrected. We use magnetic field measurement data to evaluated beam stability by tracking particles using an explicit symplectic integrator in both, transverse and longitudinal planes.

  • PDF

MCNPX를 이용한 방사선 치료실의 광중성자 선량 평가 (Evaluation of Photoneutron Dose in Radiotherapy Room Using MCNPX)

  • 박은태
    • 한국콘텐츠학회논문지
    • /
    • 제15권6호
    • /
    • pp.283-289
    • /
    • 2015
  • 현재 방사선치료는 치료효과를 높이기 위해 고에너지 광자선의 사용이 증가하고 있는 추세이다. 일반적으로 6~8 MeV 이상의 고에너지 광자선을 사용하는 경우에는, 광핵반응에 의한 광중성자가 발생됨으로써 방사선 방호의 측면에서 많은 문제를 야기 시킬 수 있다. 이에 본 연구는 MCNPX를 이용하여 방사선 치료실의 광중성자 선량분포를 분석하였다. 그 결과 10 MV와 12 MV 구간에서 급격한 흡수선량의 증가를 보였다. 이를 통해 10 MV를 시작으로 광중성자 플루언스의 급격한 증가가 흡수선량으로 연계됨을 알 수 있었다. 또한 산출된 흡수선량을 바탕으로 등가선량을 환산한 결과는 ICRP 103 권고안의 경우, 낮은 에너지 범위에서 인체의 흡수선량에 대한 2차 광자의 기여를 반영함으로써 ICRP 60 권고안에 비해 낮은 등가선량을 나타냈다.

Bolus를 대체하기 위해 자체 제작된 선량상승영역 변환기를 투과한 광자선의 특성 (Characteristics of Photon Beam through a Handmade Build-Up Modifier as a Substitute of a Bolus)

  • 김성준;이승준;문수호;설기호;이정은
    • 한국의학물리학회지:의학물리
    • /
    • 제25권4호
    • /
    • pp.225-232
    • /
    • 2014
  • 본 논문에서는 자체 제작된 선량상승영역 변환기(build-up modifier, BM)을 투과하는 high energy photon beam의 심부선량백분율(PDD)을 특성을 측정하고 이 결과를 토대로 BM 산란인자(BM scatter factor, $S_{BM}$)를 계산하였다. 다양한 조건에서 BM scatter가 PDD의 Build-up region에 미치는 영향을 평가하고 BM의 유용성을 알아보는 것이 본 연구의 목적이다. $S_{BM}$는 BM을 사용하지 않은 SFS 30 mm에서 측정된 산란인자의 값을 1로서 정규화 하였다. 가장 큰 SFS 200 mm의 경우, 6 MV 광자선을 사용할 때 $S_{BM}$는 두께에 따라 각각 1.331, 1.519, 1.598, 1.641, 그리고 1.657이었다. 10 MV 광자선에는 각각 1.384, 1.662, 1.825, 1.913, 그리고 2.001이었다. BM의 효과는 bolus의 최대 76% 효율을 가지는 것으로 나타났다. Bolus를 밀착시키기 어려운 특정적 부위에 대해 BM은 그 대안으로써 효과적인 장치가 될 수 있을 것으로 기대된다.

표피로 부터 buildup 영역까지 흡수되는 암치료용 방사선의 선량분석 (Analysis of dose from surface to near the buildup region in the therapeutic X-ray beam)

  • Vahc, Young-Woo
    • 한국의학물리학회지:의학물리
    • /
    • 제6권2호
    • /
    • pp.41-50
    • /
    • 1995
  • 암치료용 방사선 (15 MV의 에너지를 갖는 광자선) 속에 있는 흡수선량과 불순전자 또는 산란 광자에 관한 분포를 광자선 면적 크기에 따른 변화와 광자선 면적을 반만 차폐시킨 선속에 대하여 연구 조사하였다. 광자선의 에너지를 15MV로 주어질때 광자선 최대 흡수깊이 $d^{max}$ 값은 광자선의 면적을 증가시키면 시킬수록(5$\times$5 에서 30$\times$30$\textrm{cm}^2$)d$_{max}$ 값은 감소된다. 이는 광자선 즉 방사선을 발생시키는 가속기 기계 속에 있는 여러 부품 (flattening filter, collimator jaws, tray holder,……)과 상호작용하여 형성된 불순전자로 인하여 d$_{max}$ 값이 표피쪽으로 이동되어 buildup 영역에 높은 선량흡수를 갖게 된다. 최대 흡수깊이 값을 계산할 때 이러한 현상을 고려하지 않으면 그릇된 data 값을 갖는다. 대부분의 불순 전자는 광자선 중심에 주로 분포하며 그 진행거리는 30.0mm 이하의 짧은 거리를 갖는다. 이 불순전자가 30.0mm이내(즉 buidup 영역)에 전부 흡수되므로 buidup 영역은 높은 선량흡수를 갖게되어 해를 주게된다. 그러므로 이러한 불순전자를 제거시키므로서 buidup 영역에 낮은 선량 흡수를 갖을 뿐 아니라 d$_{max}$ 값도 역시 깊은 곳까지 이동시켜 치료에 효과적인 방법 이 창출된다.

  • PDF

$Au/Cd_{1-x}Zn_x/Te(x=20%)/Au$ 구조의 전기적 특성 및 방사선 탐지 특성 (The Electrical and Radiation Detection Properties of $Au/Cd_{1-x}Zn_x/Te(x=20%)/Au$ Structure)

  • 최명진;왕진석
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권1호
    • /
    • pp.39-44
    • /
    • 1997
  • Bulk type radiation detector of Au/Cd$_{1-x}$ Zn$_{x}$Te(x=20%)/Au structure using Cd$_{1-x}$ Zn$_{x}$Te(x=20%) wafer(3x4xl mm$^{3}$) grown by high pressure Bridgman method has been developed. We etched wafer surfaces with 2% Br-methanol solution and coated gold thin film on the surfaces by electroless deposition method for 5 min. in 49/o HAuCI$_{3}$ 4H20 solution. Initial etch rates of Cd, Zn and Te were 46%, 12% and 42% respectively. After etched, the surface of wafer was slightly revealed to Te rich condition. The leakage current was increased with etch time, but it didn't exceed 3nA at 50volt. The thickness of Au film was about 100nm by Rutherford Backscattering Spectroscopy(RBS). The resolution were 6.7% for 22.1 keV photon from 109 $^{109}$ Cd and 8.2% for 59.5 keV photon from $^{241}$ Am. The radiation detector such as Au/Cd$_{1-x}$ Zn$_{x}$Te(x=20%)/Au structure was more effective to monitor the low energy gamma radiation.iation.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰 (A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials)

  • 김희근;공태영;동경래;최은진
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.