Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.
본 논문은 기가 SRAM급 이상의 초고집적을- 위한 0.1$\mu\textrm{m}$의 설계치수를 갖는 MOSFET의 게이트 영역에서 활성 부분의 면저항을 감소시키기 위해 n영역으로 비소를 이온 주입하였다. 어닐링은 급속 열처리 공정 방법과 엑시머 레이져 어닐링 방법을 이용하였으며, 극히 얕은 접합의 형성이 가능하였다. 얕은 접합 형성 깊이는 10~20nm이며, 비소의 주입량은 2$\times$$10^{14}$$\textrm{cm}^2$이고, 레이져는 엑시머이며 소스는 KrF로 파장은 248mm로 어닐링 하였다. 극히 얕은 P/N$^{+}$ 접합 깊이가 15nm이며, 이때 1k$\Omega$/$\square$의 낮은 면저항 특성을 갖는 결과가 나타났다.
The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.
최근 폴리머를 기판으로 하는 Flexible TFT (thin film transistor)나 3D-ULSI (three dimensional ultra large-scale integrated circuit)에서 높은 에너지 소비효율과, 빠른 반응 속도를 실현 시키기 위해 낮은 비저항(resistivity)을 가지며, 높은 홀 속도(carrier hall mobility)를 가지는 다결정 반도체 박막(poly-crystalline thin film)을 만들고자 하고 있다. 이를 실현 시키기 위해서는 높은 온도에서 장시간의 열처리가 필요하며, 이는 폴리머 기판의 문제점을 야기시킬 뿐 아니라 공정시간이 길다는 단점이 있었다. 이에 반도체 박막의 재결정화 온도를 낮춰주는 metal (Al, Ni, Co, Cu, Ag, Pd etc.,)을 이용하여 결정화 시키는 방법이 많이 연구 되어지고 있지만, 이 또한 재결정화가 이루어진 반도체 박막 안에 잔여 금속(residual metal)이 존재하게 되어 비저항을 높이고, 홀 속도를 감소시키는 단점이 있다. 이에 본 실험은 HiPIMS (High power impulse magnetron sputtering)와 PIII and D (plasma immersion ion implantation and deposition) 공정을 복합시킨 프로세스로 적은양의 금속이온주입을 통하여 재결정화 온도를 낮췄을 뿐 아니라, 잔여 하는 금속의 양도 매우 적은 다결정 반도체 박막을 만들 수 있었다. 분석 장비로는 박막의 결정화도를 측정하기 위해 GAXRD (glancing angle X-ray diffractometer)를 사용하였고, 잔여 하는 금속의 양과 화학적 결합 상태를 알아보기 위해 XPS를 통해 분석을 하였다. 마지막으로 홀 속도와 비저항을 측정하기 위해 Hall measurement와 Four-point prove를 사용하였다.
Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.
Phosphorus is known to pile-up at the silicon surface when it is thermally oxidized. A thin layer, about 40nm thick from the silicon surface, is created containing more phosphorus than the bulk of the emitter. This layer has a gaussian profile with the peak at the surface of the silicon. In this study the pile-up effect was studied if this layer can act as a front surface field for solar cells. The effect was also tested if its high dose of phosphorus at the silicon surface can lower the contact resistance with the front metal contact. P-type wafers were first doped with phosphorus to create an n-type emitter. The doping was done using either a furnace or ion implantation. The wafers were then oxidized using dry thermal oxidation. The effect of the pile-up as a front surface field was checked by measuring the minority carrier lifetime using a QSSPC. The contact resistance of the wafers were also measured to see if the pile-up effect can lower the series resistance.
We investigated accelerated soft error rate(ASER) in 8M static random access memory(SRAM) cells. The effects on ASER by well structure, operational voltage, and cell transistor threshold voltage are examined. The ASER decreased exponentially with respect to operational voltage. The chips with buried nwell1 layer showed lower ASER than those either with normal well structure or with buried nwell1 + buried pwell structure. The ASER decreased as the ion implantation energy onto buried nwell1 changed from 1.5 MeV to 1.0 MeV. The lower viscosity of the capping layer also revealed lower ASER value. The decrease in the threshold voltage of driver or load transistor in SRAM cells caused the increase in the transistor on-current, resulting in lower ASER value. We confirmed that in order to obtain low ASER SRAM cells, it is necessary to also the buried nwell1 structure scheme and to fabricate the cell transistors with low threshold voltage and high on-current.
유리나 폴리머를 기판으로 하는 TFT(Thin film transistor), solar cell에서는 낮은 공정 온도에서($200{\sim}500^{\circ}C$) amorphous semiconductor thin film을 poly-crystal semiconductor thin film으로 결정화 시키는 기술이 매우 중요하게 대두 되고 있다. Ge은 Si에 비해 높은 carrier mobility와 낮은 녹는점을 가지므로, 비 저항이 낮을 뿐만 아니라 더 낮은 온도에서 결정화 할 수 있다. 하지만 일반적으로 쓰이는 Ge의 결정화 방법은 비교적 높은 열처리 온도를 필요로 하거나, 결정화된 원소에 남아있는 metal이 불순물 역할을 한다는 문제점, 그리고 불균일한 결정크기를 만든다는 단점이 있었다. 그 중에서도 현재 가장 많이 쓰이고 있는 MIC, MILC는 metal과 a-Ge이 접촉되는 interface나, grain boundary diffusion에 의해 핵 생성이 일어나고, 결정이 성장하는 메커니즘을 가지고 있으므로 단순 증착과 열처리 만으로는 앞서 말한 단점을 극복하는데 한계를 가지고 있다. 이에 PIII&D 장비를 이용하면, 이온 주입된 원소들이 모재와 반응 할 수 있는 표면적이 커짐으로 핵 생성을 조절 할 수 있을 뿐만 아니라, 이온 주입 시 발생하는 self annealing effect로 결정 크기까지도 조절할 수 있다. 또한 이러한 모든 process가 한 진공 장비 내에서 이루어지므로 장비의 단순화와, 공정간 단계별로 발생하는 불순물과 표면산화를 막을 수 있으므로 절연체 위에 저항이 낮고, hall mobility가 높은 poly-crystalline Ge thin film을 만들 수 있다. 본 연구에서는, 주로 핵 생성과정에서 seed를 만드는 이온주입 조건과, 결정 성장이 일어나는 증착 조건에 따라서 Ge의 결정방향과 크기가 많은 차이를 보이는데, 이는 HR-XRD(High resolution X-ray Diffractometer)와 Raman spectroscopy를 이용하여 측정 하였으며, SEM과 AFM으로 결정의 크기와 표면 거칠기를 측정하였다. 또한 Hall effect measurement를 통해 poly-crystalline thin film 의 저항과 hall mobility를 측정하였다.
지난 10년 동안 유전체 내부에 형성된 나노미터 크기의 규소알갱이는 발광센터로서 주목 받아왔다 나노미터 크기인 결정질 규소의 엑시토닉 전자-홀의 쌍들이 발광결합에 기여한다고 여겨진다. 그러나 규소결정에 존재하는 여러가지 결함들은 비발광 천이의 경로가 되어 나노규소결접립의 발광천이와 경쟁하여 발광효율을 저하시키는 요인이 된다. 이러한 결정 결함들은 고온 열처리과정에서 대부분 소멸되나 $1000^{\circ}C$ 이상의 공정 에서도 나노규소와 유전체의 계면에 존재하는 결함들은 나노규소결정립의 발광을 억제하게 된다. 일반적으로 수소로서 규소결정립의 계면을 마감처리하게 되면 규소결정립의 발광효율이 획기적으로 향상되나 불행하게도 매질 내 수소의 높은 이동성으로 말미암아 후속 열처 리 과정에서 수소마감효과는 쉽게 손실된다. 따라서 본 연구에서는 온도가역적인 수소 대신 인을 이온주입 방법으로 첨가하여 수소와 같은 계면 마감효과를 얻으며 또한 후속 고온공정 에 대한 내구력을 증대시켰다. 모재인 산화규소 기판에 400keV, $1\times10^{17}\; Si/cm^2$와 그 주위에 균일한 함량을 도핑하기 위하여 다중에너지의 인을 주입하였다. 규소와 인을 이온주입 후 Ar 분위기에서 $1100^{\circ}C$ , 두 시간의 후열처리를 통하여 규소결정립을 형성하였으며 향상된 내열효과를 시험하기 위하여 Ar 분위기에서 $1000^{\circ}C$까지 열처리하였다. 인으로 마감된 나노미터 크기인 규소 결정립의 향상된 광-발광(PL)효과와 감쇄시간, 그리고 발광파장의 변화에 대하여 논의하였다.
폴리스티렌 시료의 표면을 플라즈마 이온주입(PSII) 기술로 처리하여 친수성을 향상시켰다. 친수성이 향상된 표면은 시간이 지남에 따라 원래 성질인 소수성으로 되돌아가려는 특성 (aging effect)이 있는데 본 연구에서는 각각 분자량이 다른 폴리스티렌 필름을 이용하여 분자량에 따른 에이징 효과를 살펴보았다. 무게평균 분자량이 각각 $M_w$ = 760, 2430, 31600, 115700, 280000, 903600 인 폴리스티렌을 가스종류와 펄스전압 등의 PSII 실험 변수에 따라 표면 친수성 변화를 측정하였고 PSII 처리 후 보관온도를 달리하여 분자량에 따른 에이징 정도를 관찰하였다. 분자량이 큰 폴리스티렌이 시간에 따른 에이징 현상이 적게 일어났으며 펄스전압과 보관온도가 높은 조건에서도 사슬이 긴 폴리스티렌이 에이징이 덜 되었다. 물 접촉각을 측정하여 표면 친수성을 나타내었으며 처리 후 표면 구조 변화를 관찰하기 위하여 SEM과 AFM을 이용하였고, TOF-SIMS와 XPS를 통하여 표면에 생성된 작용기들을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.