• Title/Summary/Keyword: High energy heat source

Search Result 289, Processing Time 0.024 seconds

Study on the Performance of Fuel Cell Driven Compound Source Heat Pump System to a Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Jeong, Dong-Hwa;Byun, Jae-Ki;Choi, Young-Don;Cho, Sung-Hwan
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.23-35
    • /
    • 2008
  • In the present study, performances of fuel cell driven compound source hybrid heat pump system applied to a large community building are simulated. Among several renewable energy sources, ground, river, sea, and waste water sources are chosen as available alternative energies. The performance and energy cost are varied with the hybrid heat pump sources. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. Th system is driven by fuel cell system instead of the late-night electricity due to the advantages of the low energy cost and waste heat with high temperature.

  • PDF

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

The development of a ground source heat pump using R410A (R410A 대체냉매 적용 지열히트펌프 개발)

  • Kim, Ji-Dong;Chung, Bong-Chul;Jeong, Il-Kwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The growth of domestic energy demand is rapidly increased for the industrialization and the improvement of the living standards. It is also recognised that the importance of the use of environmentally friendly energy and high efficient equipment. Ground Source heat pumps (GSHP) using earth as heat source or sink are outstanding environmentally friendly energy systems which have high thermal efficiency when compared to conventional heating and cooling system. So government employs a policy and increase investment for expanding renewable energy market volume. Especially is established a system for obligatory usage of renewable energy to achieve 5% renewable energy diffusion rate by 2011. And the market demand for the ground source heat pump is rapidly growing due to its strong advantages. However domestic situation usually have been depended on the import of ground source heat pumps. In this paper, the results of development of a ground source heat pump using refrigerant R410A are reported.

  • PDF

The development of a ground source heat pump using R410A (R410A 대체냉매 적용 지열히트펌프 개발)

  • Kim, Ji-Dong;Chung, Bong-Chul;Jeong, Il-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.99-102
    • /
    • 2008
  • The growth of domestic energy demand is rapidly increased for the industrialization and the improvement of the living standards. It is also recognised that the importance of the use of environmentally friendly energy and high efficient equipment. Ground Source heat pumps(GSHP) using earth as heat source or sink are outstanding environmentally friendly energy systems which have high thermal efficiency when compared to conventional heating and cooling system. So government employs a policy and increase investment for expanding renewable energy market volume. Especially is established a system for obligatory usage of renewable energy to achieve 5% renewable energy diffusion rate by 2011. And the market demand for the ground source heat pump is rapidly growing due to its strong advantages. However domestic situation usually have been depended on the import of ground source heat pumps. In this paper, the results of development of a ground source heat pump using refrigerant R410A are reported.

  • PDF

A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System (지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구)

  • Kang, Shin-Hyung;Lee, Kwang Ho;Do, Sung Lok;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building (대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Lee, Jong-Gil;Hong, Seong-Ho;Choi, Young-Don;Cho, Sung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF

A Study on Optimal Operation of Summer Season Cooling System with Numbers of Heat Pumps (다수의 히트펌프로 구성된 냉난방시스템에서 하절기 히트펌프의 최적운전에 관한 연구)

  • Shin, Kwan-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Heat-pump system has a special feature that provides heating operation in winter season and cooling operation in summer season with a single system. It also has a merit that absorbs and makes use of wastewater heat, terrestrial heat, and heat energy from the air. Because heat-pump system uses midnight electric power, it decreases power peak load and is very economical as a result. By using the property that energy source is converted to low temperature when losing the heat, high temperature energy source is used to provide heating water and low temperature energy source is used to provide cooling water simultaneously in summer season. This study made up a heat-pump system with 4 air heat sources and a water heat source and implemented the optimal operation algorithm that works with numbers of heat pumps to operate them efficiently. With the heat-pump system, we applied it to cooling and heating operation in summer season operation mode in a real building.

Operating Cost Analysis of a High Temperature Ground Source Heat Pump System for a Greenhouse (시설원예용 대온도차 지열원 히트펌프 운전비용 효과 분석)

  • Kang, Shin-Hyung;Park, Seung Byung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • It is very important to obtain a out-of season production in horticultural greenhouses corresponding with higher crop prices. A ground source heat pump system has been highly spotlighed as an energy efficient heating system for the greenhouse. This paper investigated the operating cost of the ground source heat pump system with the variation of generating temperature and designing methods for heating system of the greenhouse. Even though the COP of the ground source heat pump system decreased with an increment of generating temperature in heating mode, the operating cost could be reduced. By adopting the high temperature heat pump system and heat storage tank, it could be achieved to save energy and reduce the operating time of auxiliary oil heating system for producing good plant-growth in the greenhouse.