• 제목/요약/키워드: High energy density battery

검색결과 222건 처리시간 0.029초

열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성 (Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof)

  • 임채남;유혜련;윤현기;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

전기자동차용 축전지의 유도성 충전 장치 (Inductive Charger of Battery for Electric Vehicles)

  • 김흥근;박정우;김상오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.274-277
    • /
    • 1995
  • Recent environmental pollutions have intensified the need to develop zero emission vehicles. The most effect method of such solutions is EV. EV is high energy efficiency, easy to maintain, repair and is possible to make high performance control. However, because energy density of batteries is constrained and the distance covered one charge is short range. Also because EV has disadvantage of poor accelation ability, development of high performance battery is required for large scale use of EV. EV charger analogous to gas apparatus must also be developed immediately. Charger is discriminate between on-vehicle type and off-vehicle type. As off-vehicle type is able to charge fast and safe, inductive charging is considered. This paper aims to develope off-vehicle inductive charging system. Therefore, it achieved power factor correction converter, high frequency DC/AC inverter control algorithm development which gives proof validity through simulation and formulated the basic concept of high frequency transformer design for inductive charging.

  • PDF

하이브리드 타입 에너지 저장장치의 교류 고속철도 적용 (Applying Hybrid Type Energy Storage System in AC High Speed Railway)

  • 전용주;강병욱;채희석;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.60-66
    • /
    • 2014
  • In case of DC railway, value of ESS(Energy Storage System) is already approved. Whereas AC railway system, there are a lot of differences such as system design and operation pattern. Therefore there is doubt about AC ESS usefulness. Especially, regenerative energy can return to the source. So in case of AC 25kV system, it is necessary to consider different operation algorithm compare to DC railway system. In this paper ESS which is installed in AC high-speed railway was introduced. Power consumption pattern of High speed trains were analyzed, proper storage material was reviewed and operation algorithm was suggested. Super capacitor and Battery was used with hybrid type. Super capacitor was used to handle short term energy movement because of its prompt response and battery was used to handle long term energy movement because of its high energy density. Also in case of operation algorithm, phase control method was upgraded compare to voltage magnitude detection method.

층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구 (A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries)

  • 빈민욱;나범탁;홍태은;김영진
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.

배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석 (Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.127-132
    • /
    • 2024
  • 최근 이차전지는 다양한 산업 분야에서 사용되고 있다. 특히 소형 및 경량의 특성으로 스마트폰, 노트북, 태블릿 등 다양한 휴대용 전자기기에서 높은 에너지 밀도와 충·방전 효율을 토대로 전기자동차와 에너지저장시스템(Energy Storage System, ESS)의 핵심 부품으로 사용되고 있다. 하지만 이차전지의 과도한 충·방전에 따른 수명감소, 파열, 손상, 화재 등의 문제점이 발생하고 있다. 따라서 BMS(Battery Management System)를 통하여 과도한 충·방전을 보호하고 성능을 향상시킨다. 하지만 실제 리튬이온 배터리를 사용하여 BMS의 차단 및 보호범위 설정하는 데 있어서 이차전지의 수명감소, 파열, 손상, 화재의 문제점이 따른다. 따라서 본 논문에서는 배터리 충방전기와 시뮬레이터를 활용하여 이차전지 중 사용이 높은 리튬이온 배터리와 납축전지의 충전 및 방전 특성을 살펴본다.

A Mini-Review on Non-Aqueous Lithium-Oxygen Batteries - Electrochemistry and Cathode Materials

  • Riaz, Ahmer;Jung, Kyu-Nam;Lee, Jong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권2호
    • /
    • pp.50-58
    • /
    • 2015
  • There is a great deal of current interest in the development of rechargeable batteries with high energy storage capability due to an increasing demand for electric vehicles (EVs) with driving ranges comparable to those of gasoline-powered vehicles. Among various types of batteries under development, a Li-O2 battery delivers the highest theoretical energy density; thus, it is considered a promising energy storage technology for EV applications. Despite the fact that extensive research efforts have been made in the field of Li-O2 batteries in recent years, there are still many technical challenges to be addressed, such as low round-trip efficiency, poor reversibility, and poor power capability. In this article, we provide a short review on the fundamental electrochemistry of Li-O2 batteries with non-aqueous electrolytes and on electrode materials that have been employed in cathodes (oxygen electrodes). The major aim of this mini-review is to highlight the physical and electrochemical origins of scientific challenges facing Li-O2 battery technology and to overview the strategies proposed to overcome them.

DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성 (The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF

고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구 (Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries)

  • 윤대희;최성훈
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.43-48
    • /
    • 2023
  • Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

전기자동차용 Plastic Li-ion battery

  • 한규남;서현미;김재경;김용삼;신동엽;정복환;임홍섭;엄승욱;문성인
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2000년도 전지기술심포지움
    • /
    • pp.51-62
    • /
    • 2000
  • Large plastic Li-ion (PLI) cells (25 to 28-Ah) were fabricated for an EV application. The 28-Ah cells showed high specific energy (160 Wh/kg), high specific power (526 W/g), excellent round-trip energy efficiency $(92\%)$, and low self-discharge rate ($6\%$ in 30 days). A 25-Ah cell of an earlier design showed good cycle life of up to 750 cycles at $100\%$ DOD to $80\%$ of its initial capacity, while cycle life test of a 28-Ah cell of a later design is in progress. Preliminary safety tests were also carried out using 6-Ah cells of a similar electrode design giving very encouraging results for development of a safe hish-energy density PLI battery for EV application.

  • PDF

액화 공기 에너지 저장 기술(LAES)의 경제성 분석 (Economic Evaluation of Liquid Air Energy Storage (LAES) System)

  • 고아름;박성호;류주열;박종포
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.1-14
    • /
    • 2020
  • Liquid air energy storage (LAES) using gas liquefaction has attracted considerable attention because of its mature technology, high energy density, few geographical constraints, and long life span. On the other hand, LAES has not yet been commercialized and is being developed recently. Therefore, few studies have performed an economic analysis of LAES. In this study, the levelized cost of electricity was calculated and compared with that of other energy storage systems. As a result, the levelized cost of electricity of LAES was $371/MWh. This is approximately $292/MWh, $159/MWh, $118/MWh, and $3/MWh less than that of the LiCd battery, VRFB battery, Lead-acid battery, and NaS battery. In addition, the cost was approximately $62/MWh and $195/MWh more than that of Fe-Cr flow battery and PHS. Sensitivity analysis of the levelized cost of electricity according to the main economic factors was performed, and economic uncertainty analysis was performed through a Monte-Carlo simulation. The cumulative probability curve showed the levelized cost of electricity of LAES, reflecting price fluctuations in the air compressor cost, electricity cost, and standing reserve hourly fee.