• Title/Summary/Keyword: High efficiency power conditioning system

Search Result 78, Processing Time 0.021 seconds

Controller Design of a Novel Power Conditioning System with an Energy Storage Device for Renewable Energy Sources under Grid-Connected Operation

  • Park, Sun-Jae;Lee, Hwa-Seok;Kim, Chan-In;Park, Joung-Hu;Jeon, Hee-Jong;Ryeom, Jeongduk
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.390-399
    • /
    • 2013
  • As a result of the depletion of fossil fuels and environmental contamination, it has become important to use renewable energy. For the stable utilization of renewable energy sources, energy storage devices must be used. In addition, renewable and distributed power sources with energy storage devices must operate stably under grid-connected mode. This paper proposed dynamic response modeling for renewable power generation systems including a charger/discharger with an energy storage device in order to derive a method to guarantee stable operation while fully utilizing the energy from the energy storage device. In this paper, the principle operation and design guidelines of the proposed scheme are presented, along with a performance analysis and simulation results using MATLAB and PSIM. Finally, a hardware prototype of a 1kW power conditioning system with an energy storage device has been implemented for experimental verification of the proposed converter system.

An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation (태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구)

  • Lee, Kwang-Seob;Putrayudha S., Andrew;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source (저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

The numerical analysis of performance of OTEC system with vapor-vapor ejector (증기-증기 이젝터를 적용한 OTEC 시스템 성능의 수치적 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Ye, Byung-Hyo;Ha, Soo Jeong;Choi, In-Soo;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, the Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed newly. At this OTEC system, a vapor-vapor ejector is installed at inlet of condenser. The vapor-vapor ejector plays a very important role in increasing of the production work of low-stage turbine throughout the decrement of outlet pressure of ejector. The performance analysis is conducted for optimizing the system with HYSYS program. The procedure of performance analysis consists of outlet pressure of high turbine, the mass ratio of working fluid at separator, total working fluid rate, and nozzle diameters of vapor-vapor ejector. The main results is summarized as follows. The nozzle diameter is most important thing in this study. When each nozzle diameter of vapor-vapor ejector is 10 mm, the efficiency of OTEC system with vapor-vapor ejector shows the highest value. So it is necessary to set the optimized nozzle diameters of vapor-vapor ejector for achieving the high efficiency OTEC power system.

Analysis of voltage controller of Dual-Buck Inverter using Redox Flow Battery (RFB 용 Dual-Buck Inverter 전압제어 품질 향상에 관한 연구)

  • Choe, Jung-Muk;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.393-394
    • /
    • 2014
  • This paper proposes advanced RFB PCS for islanded environment. To accommodate islanded system, power conditioning needs voltage control authority changing. Dualbuck inverter topology is designed for the high efficiency. In order to reduce voltage error the repetitive controller is used in this paper. The control performance has been verified with computer simulation.

  • PDF

Analyze of High Efficiency PCS for Fuel Cell (연료전지용 3-Stage PCS의 손실 해석)

  • Ba, Yasgalan;Lee, Yong-Jin;Han, Dong-Hwa;Kim, Young-Sik;Gwon, Wang-Song;Jeong, Beong-Hwang;Shin, Woo-Sok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.100-102
    • /
    • 2008
  • As Utility interactive fuel cell systems are widely used, it is required for each power conditioning system(PCS) to have higher generating performance and more stable connecting characteristics. This study is focused to minimization of power losses and hence higher efficiency related to the new half bridge type 3-stage utility interactive PCS topology. The loss factor of half-bridge converter becomes only 1.2[%] under the rated load, and hence total efficiency is maintained to be higher as 91[%].

  • PDF

A Study on the Development of Charging Controller in Stand-Alone PV Power Generation System (독립형 태양광 발전 시스템 충전제어기 개발에 관한 연구)

  • 곽준호;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.916-921
    • /
    • 2004
  • This paper describes microprocessor-based control of photovoltaic power conditioning system. where the microprocessor is responsible for control of output power in accordance with the generated array DC power. The microprocessor includes the control algorithm of maximum power point tracking and converter control algorithm. In this power, we have designed a MPPT(Maximum Power Point Tracker) algorithm with environment factors and a PWM(Pulse Width Modulation) algorithm for high efficiency. The controller has been tested in the laboratory with the power conditioner and shows excellent performance.

Bidirectional Tapped-inductor Boost-Flyback Converter (비절연형 양방향 탭인덕터 부스트 플라이백 컨버터)

  • Kim, Hyun-Woo;Jeon, Young-Tae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.395-401
    • /
    • 2015
  • This paper proposes a new bidirectional DC-DC converter with high efficiency. The proposed converter is composed of a flyback and a tapped-inductor boost converter to satisfy extreme operating conditions with low cost. The outputs are connected in series to achieve a high-voltage step-up. In the reverse direction, the proposed converter has an extreme step-down voltage. In this study, the proposed converter was employed with a 100 W hardware prototype. To design the controller, a small-signal transfer function of the proposed converter is derived. For PV power conditioning systems, a maximum power point tracking method is applied with perturb and observe method. To verify the operation of the bidirectional power flow, the current controller is applied. All of the controllers are employed with a digital signal processor.

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 PV PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • The modular line-connected photovoltaic PCS (power conditioning system) is proposed. The proposed system consists of a step-up DC-DC converter and a full-bridge inverter. A step-up DC-DC converter using a dual series-resonant rectifier circuit and a active-clamp circuit is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

  • PDF

Grid-Connected Photovoltaic System Applying the Step Variable MPPT Control and DVR (Step 가변형 MPPT 제어기법과 DVR을 적용한 계통연계형 태양광 발전 시스템)

  • Lee, Yong-Sik;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.42-49
    • /
    • 2012
  • Grid-connected photovoltaic generator system requires high performance PCS(Power Conditioning System) according to the standard of 'Distributed Generation Grid-Connected Technology Standards'. This paper presents the MPPT control method which improves output efficiency through fast tracking to the maximum power point of PV and a reduced self-excited vibration. Secondly, in this paper DVR function was applied to PCS to compensate the voltage sag frequently happening for a power system. The proposed PCS control is analyzed and compared to conventional PCS operating characteristic, the various insolation and loads, and voltage sag condition through PSIM tool. It proves the utility.