• Title/Summary/Keyword: High efficiency operation

Search Result 1,914, Processing Time 0.032 seconds

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu;Jinsen Xie;Pengyu Chen;Yingjie Xiao;Zining Ni;Tao Liu;Nianbiao Deng;Aikou Sun;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2756-2766
    • /
    • 2024
  • Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Demonstration and Operation of Pilot Plant for Short-circuit Nitrogen Process for Economic Treatment of High Concentration Nitrogen Wastewater (고농도 질소함유폐수의 경제적 처리를 위한 단축질소공정 파일럿플랜트 실증화 및 운영 결과)

  • Lee, Jae Myung;Jeon, Ji-hyeong;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • A 2㎥/d combined wastewater treatment pilot plant containing the multi-stage vertical stacking type nitrification reactor was installed and operated for more than 1 year under the operating conditions of the short-circuit nitrogen process (pH 8, DO 1mg/L and Internal return rate 4Q from nitrification to denitrification reactor). For economically the combination treatment of food wastewater and the leachate from a landfill, the optimal combination ratio was operated by adjusting the food wastewater with the minimum oil content to 5-25% of the total throughput. The main treatment efficiency of the three-phase centrifugal separator which was introduced to effectively separate solids and oil from the food wastewater was about 52% of SS from 116,000mg/L to 55,700mg/L, and about 48% of normal hexane (NH) from 53,200mg to 27,800 mg/L. During the operational period, the average removal efficiency in the combined wastewater treatment process of BOD was 99.3%, CODcr 94.2%, CODmn 90%, SS 70.1%, T-N 85.8%, and T-P 99.2%. The average concentrations of BOD, CODcr, T-N, and T-P of the treated water were all satisfied with the discharge quality standard for landfill leachate ("Na" region), and SS was satisfied after applying the membrane process. On-site leachate had a relatively high nitrite nitrogen content in the combined wastewater due to intermittent aeration of the equalization tanks and different monthly discharges. Nevertheless nitrite nitrogen was accumulated, denitrification from nitrite nitrogen was observed rather than denitrification after complete nitrification. The average input of anti-forming chemical during the operation period is about 2L/d, which seems to be economical compared to the input of methanol required to treat the same wastewater.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Transilluminated Powered Phlebectomy Using Arthroscopic Equipment in Varicose Vein of Lower Extremities (하지정맥류에서 관절경 장비를 이용한 광투시 전동형 정맥적출술)

  • 박형주;이철세;이길노;이석열
    • Journal of Chest Surgery
    • /
    • v.36 no.6
    • /
    • pp.391-396
    • /
    • 2003
  • Background: Recently transilluminated powered phlebectomy was introduced and used as a method of surgical treatment for varicose vein in lower extremities. The advantage of transilluminated powered phlebectomy are minimal scar and good cosmetic effect. However, the disadvantages of transilluminated powered phlebectomy is that a high priced Trivex system must be used which increases the patient's expenses. Therefore, we performed a transilluminated powered phlebectomy using an existing arthroscopic equipment instead of Trivex system and observed the effect of treatment and efficiency of the treatment. Material and Method: From March, 2000 to February, 2003, 78 patients (113 limbs) underwent transilluminated powered phlebectomy with an arthroscopic equipment. Patient's disease history, the number of operative scars and complications were reviewed. Result: The operation was performed in 133 limbs of the 78 patients (34 men, 44 women) and the age of patients were ranged from 16 to 72 years with mean age of 41.8 years. Operative time ranged from 20 to 65 minutes (average 48.7 minutes) per limb. The number of operative scar per limb from 2 to 7 (average 4.9). Postoperative complications are transient ecchymosis (78 cases) that desappeared spontaneously, edema persisting longer than 3 weeks (6 cases), remnant varicose vein (4 cases), skin perforation during operative procedure (2 cases), and contact dermatitis due to compression stocking (4 cases) The mean hospitalization day was 3.09 days. Subjective mean satisfaction degree of operation by the patients using a visual analogue scale was 92.6%. Conclusion: Our findings demonstrated that transilluminated powered phleectomy using arthroscopic equipment was possible and had good cosmetic results with acceptable complications.

Analysis of Traffic Delays at Scramble Crosswalks Considering Signal Phase Sequence and Traffic Volume (신호현시 순서와 통행량을 고려한 대각선 횡단보도 지체도 분석)

  • Kim, Suji;Lee, Jooyoung;Kwon, Yeongmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.116-128
    • /
    • 2020
  • This study compared the delays of scramble crosswalks and general crosswalks, considering the pedestrian and vehicle traffic at intersections. Based on the signal theory, this study used traffic delays as a measure of feasibility of installing scramble crosswalks. The road structure and length of signal lights were assumed to be specific numbers to calculate the delays in vehicles and pedestrians. With the computed delays, this study compared general crosswalks and scramble crosswalks, and evaluated the feasibility sections on the installation of scramble crosswalks using circular and non-circular signal phases, respectively. The analysis confirmed that the introduction of scramble crosswalks might be more appropriate when the traffic ratio on the main roads is high. In addition, the application of non-circular signal phases is more proper for the operation of scramble crosswalks than circular signal phases. In the non-circular signaling system, however, it was shown that diagonal crosswalks might not be practical if the demand for diagonal crossing is too low. These results are expected to contribute to the development of basic guidelines for assessing the installment feasibility of scramble crosswalks in terms of traffic operation and efficiency.

A Study on the Thermo-Flow Analysis of Air Conditioning Electric Compressor Motor System for Hybrid Electric Vehicles (하이브리드 자동차 에어컨용 전동식 압축기 모터 시스템의 열유동 해석 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.592-597
    • /
    • 2013
  • The heat generated at the motor and inverter inside the electric compressor of inverter built-in type is mainly cooled by refrigerant and generally, there is not a thermal problem. However, the close relation of heat transfer from the motor and inverter parts to the compression part affects on compressor efficiency. Also, according to the surrounding environment and system operation condition, the increased temperature of the motor and inverter can affect the power density of the motor system, and especially, the inverter may be prevented to operate by the temperature limits. In this study, we performed thermo-flow analysis of electric compressor motor system, and investigated the heat dissipation enhancement of the motor and inverter. The motor part in the operation region of the electric compressor was generally maintained at low temperature and the inverter part at high compressor speed was lower temperature than the temperature limit of $85^{\circ}C$. However, the case of the inverter at low speed harsh condition was in excess of $10^{\circ}C$. Therefore, in order to solve the thermal problem, the heat reduction technology of the motor and inverter is essential as well as the improvement of flow path in the compressor.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.