• Title/Summary/Keyword: High efficiency LCD

Search Result 126, Processing Time 0.025 seconds

A Study on the Realization of the High Efficiency LCD Photoresist Removal Technology (고효율 LCD 감광막 제거기술 구현 연구)

  • Son, Young-Su;Ham, Sang-Yong;Kim, Byoung-Inn;Lee, Sung-Hwee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.977-982
    • /
    • 2007
  • The realization of the photoresist(PR) removal method with vaporized water and ozone gas mixture has been studied for the LCD TFT array manufacturing. The developed PR stripper uses the water boundary layer control method based on the high concentration ozone production technology. We develop the prototype of PR stripper and experiment to find the optimal process parameter condition like as the ozone gas flow/concentration, process reaction time and thin boundary layer formation. As a results, we realize the LCD PR strip rate over the 0.4 ${\mu}m/min$ and this PR removal rate is more than 5 times higher than the conventional immersion type ozonized water process.

Evaluation in Performance of High Voltage Cable for BLU of TFT-LCD by Improvement for Material and Manufactured Process (TFT-LCD BLU용 고압 케이블의 재료특성 및 제조공정 개선을 통한 성능 향상)

  • Chung, Jin-Do;Kim, Jae-Hoon;Koo, Kyung-Wan;Hwang, Seung-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.495-498
    • /
    • 2009
  • To improve the efficiency of the high voltage cable for BLU(backlight unit) of TFT-LCD(Thin Film Transistor-Liquid Crystal Display), the analysis for the trial products(UL3239, UL3633) is conducted by using SEM(scanning electron microscope) and EDX(Energy Dispersive X-ray Spectroscopy). The result that it is possible to accumulate the know-how to about stranding pitch through effective improvement of stranding process. The troubles which are the badness of withstanding voltage and tensile strength etc. are solved by development of excellent material. Furthermore, phenomenon of conductor unfasten in the harness work is solved by improvement of the stranding wire process.

High Efficient FSC LCD using Color Break-up Reduction and Compensation (FSC LCD 에서의 컬러 분리 저감 및 화질 보상 기술)

  • Kim, Dae-Sik;Cho, Seong-Phil;Lee, Ho-Sup;Kim, Choon-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.486-488
    • /
    • 2015
  • FSC(Field Sequential Color) LCD has high efficiency, high brightness and color saturation due to 3 times aperture larger than conventional LCD. However it is well known that color break-up (CBU) and color interference are hot issue need to be solved. We propose a novel sequential driving method with edge-lit light guide composed of $16{\times}15$ blocks to reduce CBU and color interference. The experimental results show not only suppression of CBU but also the side effects are minimized.

  • PDF

Influence of Glass Tube Diameter in the Cold Cathode Fluorescent Lamps for 40-inch LCD-TVs

  • Lee, Min-Kyu;Lee, Kyoung-Ho;Han, Kyu-Hyeon;Lee, Jae-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.707-710
    • /
    • 2009
  • As the inner diameter of CCFL is increased in the range of outer diameters 3~5 mm, the luminance efficiency is increased by the low power consumption. For the outer diameter 5 mm, the efficiency is linearly increased even at the range of a high current.

  • PDF

Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in TFT-LCD Display (TFT-LCD용 휘도 성능을 향상시키는 나노 와이어 그리드 편광 필름의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.105-124
    • /
    • 2011
  • TFT-LCD consists of LCD panel on the top, circuit unit on the side and BLU on the bottom. The recent development issues of BLU-dependent TFT-LCD have been power consumption minimization, slimmerization and size maximization. As a result of this trend, LED is adopted as BLU instead of CCFL to increase brightness and to reduce thickness. In liquid crystal displays, the light efficiency is below 10% due to the loss of light in the path from a light source to an LCD panel and presence of absorptive polarizer. This low efficiency results in low brightness and high power consumption. One way to circumvent this situation is to use a reflective polarizer between backlight units and LCD panels. Since a nano-wire grid polarizer has been known as a reflective polarizer, an idea was proposed that it can be used for the enhancement of the brightness of LCD. The use of reflective polarizing film is increasing as edge type LED TV and 3D TV markets are growing. This study has been carried out to fabrication of the nano-wire grid polarizer(NWGP) and investigated the brightness enhancement of LCD through polarization recycling by placing a NWGP between an c and a backlight unit. NWGPs with a pitch of 200nm were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the UV imprinting and was applied to plastic PET film. In this case, the brightness of an LCD with NWGPs was 1.21 times higher than that without NWGPs due to polarization recycling.

Discharge Characteristics of Xe Plasma Flat Lamp for LCD Backlight According to Operating Voltage Pulse (LCD 백라이트용 Xe계 플라즈마 평판 램프의 구동 전압 Pulse의 조건에 따른 방전 특성 연구)

  • Kwon, Eun-Mi;Kim, Hyuk-Hwan;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.271-278
    • /
    • 2003
  • Conventional backlight for liquid crystal display (LCD) uses mercury which leads to environmental pollution. In this study, characteristics of AC coplanar type mercury-free plasma flat lamp have been studied. Pollution-free Xe-He is adopted as a discharge gas system. Since the Xe gas has a lower efficiency in generating vacuum ultraviolet (VUV) than mercury, the improvement of luminance and luminous efficiency in the Xe gas system is very important. The electrode, dielectric, and phosphor layers constituting lamp are formed on the bottom glass by the screen printing method. The effects of pulse shape, on-time, and pulse frequency on the luminance and luminous efficiency have been examined. For Xe(5%)-He gas, the lamp exhibits higher efficiency with sharper pulse shape, higher peak voltage, and shorter pulse on-time (up to 2 $\mu\textrm{s}$). Higher efficiency and lower consumption of power were obtained at 30 kHz than at 60 kHz. The collision of ion to bottom electrodes is a dominant factor to raise the lamp temperature. Therefore the high voltage and low current discharge system is necessary for reduction of the lamp temperature as well as for enhancement of the luminous efficiency.

Performance Evaluation of 2-Dimensional Light Source using Mercury-free Flat Fluorescent Lamps for LCD Backlight Applications

  • Park, Joung-Hu;Cho, Bo-Hyung;Lee, Ju-Kwang;Whang, Ki-Woong
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2009
  • Recently, 2-dimensional flat light sources have been attracting much attention for its use in LCD backlight applications because of its high luminous efficiency and uniformity. A long-gap discharge, mercury-tree flat fluorescent lamp has been developed, which shows a high brightness ($>5000\;cd/m^2$) and high luminous efficacy (60 lm/W). Additionally, it has a wide operating margin and stable driving condition with the aid of an auxiliary electrode. For driving the lamp, a narrow pulse power to maintain the glow discharge state is required. Since there has been no research for this kind of lamp driving, this paper proposes a newly developed short-pulse, high-voltage lamp-driving scheme. The proposed lamp system uses a ballast with a coupled-inductor in order to raise the short pulse voltage up to the lamp ignition level and to obtain energy-recovery action during the glow discharge mode. The operation principles are presented and also the system performances such as the lighting efficiency, spatial and angular uniformities are evaluated by hardware experiments. The results show that the proposed lighting system is a good candidate for the next-generation of LCD backlight systems.

The invariant design of planar magnetron sputtering TFT-LCD

  • Yoo, W.J.;Demaray, E.;Hosokawa;Pethe, R.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • The main consideration factor to design a magnetron of the sputtering system for TFT-LCD metallization is high sheet resistance (Rs) uniformity which is provided by the high target erosion and high current efficiency. The present study has developed a rectangular magnetron for TFT-LCD to bve considered full target erosion and high film uniformity. After an aluminum-2 at.% and alloy target was installed in a magnetron source and the film was deposited on the glass of 600${\times}$720 mm, the Rs uniformity of the deposited film was measured as functions of the magnet tilt and magnet scanning configuration. And the target erosion profile was observed with the target voltage. When sputtered at 4mtorr and 10kW, the magnet tilt for the high Rs uniformity of 8.38% was 7mm. The plasma voltage at the dwell home and end for full-face target erosion, when scanned the magnetron was 120% compared to the mean voltage of the other area.

  • PDF

A Study on LLC Resonant Converter using the Planar Transformer for the LED Backlight of Slim-Type LCD TV (슬림형 LCD TV의 LED 백라이트 구동용 평판형 트랜스포머를 적용한 LLC 공진컨버터에 관한 연구)

  • Son, Ho-In;Kim, Chang-Sun;Kim, Dae-Nyeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.319-326
    • /
    • 2010
  • The power supply devices for reducing the size of the LCD TV are increasingly required for high efficiency and highe power density. Recently, the LED backlight of the LCD TV comes into the spotlight for LCD TV, because the conventional CCFL backlight has difficult to use constantly according to the mercury restrictions. And In this paper, the LLC resonant converter using the planar transformer for slim-type LED backlight of LCD TV is presented and verified through an experimental prototype for 47 inch LCD TVs with LED backlight system.

Holographic phase gratings in back- and frontlights for LCD's

  • Bastiaansen, C.W.M.;Heesch, C. van;Broer, D.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.421-421
    • /
    • 2006
  • The light and energy-efficiency of classical liquid crystal displays is notoriously poor due to the use of absorption-based linear polarisers and colour filters. For instance, the light efficiency of PVAL polarisers is typically between 40 and 45 % and the colour filters have a typical efficiency below 35 % which results in a total light and energy-efficiency of the display below 10 %. In the past, a variety of polarizers were developed with an enhanced efficiency in generating linearly polarized light. Typically, these polarizers are based on the polarisationselective reflection, scattering or refraction of light i.e. one polarisation direction of light is directly transmitted to the LCD/viewer and the other polarization direction of light is depolarised and recycled which results in a typical efficiency for generating linearly polarized light of 70-85 %. Also, special colour filters have been proposed based on chiral-nematic reactive mesogens which increase the efficiency of generating colour. Despite the enormous progress in this field, a need persists for improved methods for generating polarized light and colour based on low cost optical components with a high efficiency. Here, the use of holographic phase gratings is reported for the generation of polarized light and colour. The phase grating are recorded in a photopolymer which is coated onto a backor frontlight for LCDs. Typically the recording is performed in the transmisson mode or in the waveguiding mode and slanted phase gratings are generated with their refractive index modulation at an angle between 20o and 45o with the normal of the substrate. It is shown that phase gratings with a high refractive index modulation and a high efficiency can be generated by a proper selection of the photopolymer and illumination conditions. These phase gratings coupleout linearly polarized light with a high contrast (> 100) and the light is directed directly to the LCD/viewer without the need for redirection foils. Dependent on the type of phase grating, the different colours are coupled-out at a slightly different angle which potentially increases the efficiency of classical colour filters. Moreover, the phase gratings are completely transparent in direct view which opens the possibility to use them in frontlights for LCDs. Holographic polarization gratings posses a periodic pattern in the polarization state of light (and not in the intensity of light). A periodic pattern in the polarization direction of linearly polarized light is obtained upon interference of two circularly polarized laser beams. In the second part of the lecture, it is shown that these periodic polarization patterns can be recorded in a linear photo-polymerizable polymer (LPP) and that such an alignment layer induces a period rotation in the director of (reactive and non-reactive) liquid crystals. By a proper design, optical components can be produced with only first order diffraction and with a very high efficiency (>0.98). It is shown that these diffraction gratings are potentially useful in projection displays with a high brightness and energy efficiency

  • PDF