• 제목/요약/키워드: High density plasma etching

검색결과 159건 처리시간 0.032초

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

BCl$_3$, BCl$_3$/Ar 고밀도 유도결합 플라즈마를 이용한 GaAs 와 AlGaAs 반도체 소자의 건식식각 (Dry Etching of GaAs and AlgaAs Semiconductor Materials in High Density BCl$_3$, BCl$_3$/Ar Inductively Coupled Plasmas)

  • 임완태;백인규;이제원;조관식;전민현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.31-36
    • /
    • 2003
  • We investigated dry etching of GaAs and AlGaAs in a high density planar inductively coupled plasma system with $BCl_3$ and $BCl_3/Ar$ gas chemistry. A detailed process study as a function of ICP source power, RIE chuck power and $BCl_3/Ar$ mixing ratio was performed. At this time, chamber pressure was fixed at 7.5 mTorr. The ICP source power and RIE chuck power were varied from 0 to 500 W and from 0 to 150 W, respectively. GaAs etch rate increased with the increase of ICP source power and RE chuck power. It was also found that etch rate of GaAs in $BCl_3$ gas with 25% Ar addition was superior to that of GaAs in a pure $BCl_3$ (20 sccm $BCl_3$) plasma. The result was same with AlGaAs. We expect that high ion-assisted effect in $BCl_3$/Ar plasma increased etch rates of both materials. The GaAs and AIGaAs features etched at 20 sccm $BCl_3$ and $15BCl_3/5Ar$ with 300 W ICP source power, 100 W RIE chuck power and 7.5 mTorr showed very smooth surfaces(RMS roughness < 2 nm) and excellent sidewall. XPS study on the surfaces of processed GaAs also proved extremely clean surfaces of the materials after dry etching.

  • PDF

헬리콘 플라즈마를 이용한 $Ge_2Sb_2Te_5(GST)$ 상변화 재료의 식각 특성 검토 (Etching Characteristics of $Ge_2Sb_2Te_5$ Using High-Density Helicon Plasma for the Nonvolatile Phase Change Memory Applications)

  • 윤성민;이남열;류상욱;신웅철;유병곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.203-206
    • /
    • 2004
  • For the realization of PRAM, $Ge_2Sb_2Te_5$ (GST) has been employed for the phase transition between the crystal and amorphous states by electrical joule heating. Although there has been a vast amount of results concerning the GST in material aspect for the laser-induced optical storage disc applications, the process-related issues of GST for the PRAM applications have not been reported. In this work, the etching behaviors of GST were investigated when the processing conditions were varied in the high-density helicon plasma. The etching parameters of RF main power, RF bias power, and chamber pressure were fixed at 600 W, 150 W, and 5 mTorr, respectively. For the etching processes, gas mixtures of $Ar/Cl_2$, $Ar/CF_4$, and $Ar/CHF_3$ were employed, in which the etching rates and etching selectivities of GST thin film in given gas mixtures were evaluated. From obtained results, it is found that we can arbitrarily design the etching process according to given cell structures and material combinations for PRAM cell fabrications.

  • PDF

반도체 플라즈마 식각 장치의 부품 가공 연구 (A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.

Dry Etching Properties of HfAlO3 Thin Film with Addition O2 gas Using a High Density Plasma

  • Woo, Jong-Chang;Lee, Yong-Bong;Kim, Jeong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.164-169
    • /
    • 2014
  • We investigated the etching characteristics of $HfAlO_3$ thin films in $O_2/Cl_2/Ar$ and $O_2/BCl_3/Ar$ gas, using a high-density plasma (HDP) system. The etch rates of the $HfAlO_3$ thin film obtained were 30.1 nm/min and 36 nm/min in the $O_2/Cl_2/Ar$ (3:4:16 sccm) and $O_2/BCl_3/Ar$ (3:4:16 sccm) gas mixtures, respectively. At the same time, the etch rate was measured as a function of the etching parameter, namely as the process pressure. The chemical states on the surface of the etched $HfAlO_3$ thin films were investigated by X-ray photoelectron spectroscopy. Auger electron spectroscopy was used for elemental analysis on the surface of the etched $HfAlO_3$ thin films. These surface analyses confirm that the surface of the etched $HfAlO_3$ thin film is formed with nonvolatile by-product. Also, Cl-O can protect the sidewall due to additional $O_2$.

OES 를 이용한 SBT 박막의 식각 메카니즘 연구 (The Study of Etching Mechanism in $SrBi_2Ta_2O_9$ thin film by Optical Emission Spectroscopy)

  • 신성욱;김창일;장의구;이원재;유병곤;김태형
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.40-44
    • /
    • 2000
  • In this paper, since the research on the etching of SrBi$_2$Ta$_2$O$_{9}$ (SBT) thin film was few (specially Cl$_2$-base ), we had studied the surface reaction of SBT thin films using the OES in high density plasma etching as a function of rf power, dc bias voltage, and Cl$_2$/(C1$_2$+Ar) gas mixing ratio. It had been found that the etch rate of SBT thin films appeared to be more affected by the physical sputtering between Ar ions and surface of the SBT compared to the chemical reaction in our previous papers$^{1.2}$ . The change of Cl radical density that is measured by the OES as a function of gas combination showed the change of the etch rate of SBT thin films. Therefore, the chemical reactions between Cl radical in plasma and components of the SBT enhance to increase the etch rates of SBT thin films and these results were confirmed by XPS analysis.

  • PDF

OES를 이용한 SBT 박막의 식각 특성 연구 (The Study of Etching Characteristic in $SrBi_2$$Ta_2$$O_9$ Thin Film by Optical Emission Spectroscopy)

  • 신성욱;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.185-189
    • /
    • 2001
  • In this paper, since the research on the etching of SrBi$_2$Ta$_2$$O_{9}$(SBT) thin film was few (specially Cl$_2$-base) we had studied the surface reaction of SBT thin films. We have used the OES(optical emission spectroscopy) in high density plasma etching as a function of RF power, dc bias voltage, and Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. It had been found that the etch rate of SBT thin films appeared to be more affected by the physical sputtering between Ar ions and surface of the SBT compared to the chemical reaction. The change of Cl radical density that was measured by the OES as a function of gas combination showed the change of the etch rate of SBT thin films. Therefore, the chemical reactions between Cl radical in plasma and components of the SBT enhanced to increase the etch rates SBT thin films. These results were confirmed by XPS(x-ray photoelectron spectroscopy) analysis.s.

  • PDF