• Title/Summary/Keyword: High damping

Search Result 1,075, Processing Time 0.025 seconds

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing (볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구)

  • 이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

TRACKING FOR HIGH-ORDER DAMPING OF THIN BEAM OSCILLATION

  • Yoo, Wan-Suk;Lee, Jae-Wook;Kim, Hyun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.984-989
    • /
    • 2008
  • An estimation of high-order damping in flexible multibody dynamic simulation is introduced in this paper. The suggested damping model based on the experimental modal analysis leads to more accurate correlation results comparing to the traditional linear damping model because it directly uses the modal parameters of each mode achieved from experiment even high frequency modes. The modal parameters until the 5th mode are extracted from the experimental modal testing of the flexible beam using a high speed camera. And using the measured damping ratio and natural frequency until the 5th mode, the generic damping model is constructed. Then, the ANCF (absolute Nodal Coordinate Formulation) simulation results are compared to experimental results until the 5th mode.

  • PDF

Experimental Structural Performance Evaluation of Hybrid Damper Combining with High Damping Rubber and Steel Slit (고감쇠고무와 강재슬릿이 결합된 하이브리드 댐퍼의 실험적 구조성능평가)

  • Lee, Joon-Ho;Park, Byung-Tae;Kim, Yu-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • It is effective to apply hybrid damping device that combine separate damping device to cope with various seismic load. In this study, HRS hybrid damper(hybrid rubber slit damper) in which high damping rubber and steel slit plate are combined in parallel was proposed and structural performance tests were performed to review the suitability for seismic performance. Cyclic Loading tests were performed in accordance with criteria presented in KDS 41 17 00 and MOE 2019. As a result of the test, the criteria of KDS 41 17 00 and MOE2019 was satisfied, and the amount of energy dissipation increased due to the shear deformation of the high-damping rubber at low displacement. Result of performing the RC frame test, the allowable story drift ratio was satisfied, and the amount of energy dissipation increased in the reinforced specimen compared to the non-reinforced specimen.

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.

Effects of Ti on Mechanical Property and Damping Capacity in Hot-rolled Fe-17%Mn Alloy (열간압연한 Fe-17wt%Mn 합금의 기계적 성질과 진동감쇠능에 미치는 티타늄 첨가의 영향)

  • Kim, Tai-Hoon;Kim, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Effects of Ti on damping capacity and mechanical properties are investigated in hot rolled Fe-17%Mn alloy. The existing damping alloy with Fe-Mn binary system was limited the use by high production cost, however in case of using scrap iron instead of pure iron although the content of carbon is higher it is possible to be applied wider field especially construction items because the production cost is lower. However, the excellent specific damping capacity is dropped due to the high content of carbon, we developed advanced type of damping alloy included Ti. TiC is formed with added Ti and it holds the specific damping capacity similar to existing damping alloy. The effect of Ti on damping capacity is found to be beneficial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

Damping Estimation of Railway Bridges Using Extended Kalman Filter (확장형 칼만 필터를 이용한 철도교의 감쇠비 분석)

  • Park, Dong-Uk;Kim, Nam-Sik;Kim, Sung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.294-300
    • /
    • 2009
  • In high speed railway bridges, dynamic analysis is important because of high passing velocity and moving load at the regular intervals, and damping ratio is a major parameter to predict dynamic responses. In this paper, damping ratios were estimated by using half power band width method and extended Kalman filter according to acceleration signal conditions, and a relationship between estimated damping ratios and representative values of bridge vibration was derived. From the results, damping ratios estimated from total ambient vibration were more reliable than only free vibration part. In case of using extended Kalman filter, the estimated damping ratios varying with RMQ(root mean quad), as one of representative values of bridge vibration, have more feasible trend. Thus, it is shown that further studies on reliabilities of estimated damping ratios are needed.

Characteristic Tests of Reduced-Scale High Damping and Lead Rubber Bearings (축소규모 고감쇠 및 납삽입형 면진베어링에 대한 특성시험고찰)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.175-182
    • /
    • 1997
  • The characteristic tests of reduced-scale high damping and lead rubber bearings are performed by changing the shear displacements and the vertical loads. The test frequency is 0.5Hz. Test results show that the shear stiffnesses obtained for both bearings are less than target values, but the damping values are greater than the targets. The shear stiffness and damping of lead are larger than those of high damping bearings. The shear-deformation characteristic values such as stiffness, damping and yield load values are changed according to the level of design vertical loads.

  • PDF

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF