• Title/Summary/Keyword: High counting rate

Search Result 66, Processing Time 0.032 seconds

A Study of Quality Control of Nuclear Medicine Counting System and Gamma Camera (핵의학 계측기기 및 감마카메라의 정도관리 연구)

  • 손혜경;김희중;정해조;정하규;이종두;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the current status of performing nuclear medicine quality control in korea and to test selected protocols of quality control of nuclear medicine counting system and gamma camera. Materials and Methods: Fifty three hospitals were included to investigate the current status of nuclear medicine quality control in korea. The precision of dose calibrator and thyroid uptake system was measured with Tc-99m 35.52 MBq for 2 minuets and Tc-99m 5.14 MBq for 10 sec every one minute, respectively. The sensitivity of CeraSPECT$^{TM}$ with low energy high resolution parallel hole collimator was measured using two cylindrical phantoms with 15 cm in diameter and 12 cm and 30 cm in heights containing Tc-99m. The correction factor for sensitivity of CeraSPECT$^{TM}$ was calculated using phantom data. The system planar sensitivity, uniformity, count rate and spatial resolution were measured for Varicam gamma camera with low energy high resolution parallel hole collimator using 140 keV centered 20% energy window, 256$\times$256 or 512$\times$512 matrix sizes. Results: The quality control of dose calibrator and well counter were showed poor performance status. On the other hand, The quality control of gamma camera and other systems were showed relatively good performance status. The results of precision of dose calibrator and thyroid uptake system was $\pm$1.4%(<$\pm$5%) and chi^2=29.7(>16.92), respectively. It showed that the sensitivity of CeraSPECT$^{TM}$ was higher in center slices compared with the edge slices. After correction of nonuniform sensitivities for patient data, it showed better results compare with prior to correction. System planar sensitivity of Varicam gamma camera was 4.39 CPM/MBq. The observed count rate at 20% loss was 102,407 counts/sec (head 1), 113,427 counts/sec (head 2), when input count rate was 81,926 counts/sec (head 1), 90,741 counts/sec (head 2). The spatial resolution without scatter medium were 8.16 mm of FWHM and 14.85 mm of FWTM. The spatial resolution with scatter medium were 8.87 mm of FWHM and 18.87 mm of FWTM. Conclusion: It is necessary to understand the importance of quality control and to perform quality control of nuclear medicine devices.vices.

  • PDF

Motional kinematics of Frozen-thawed Korean native cattle semen use of computer aided semen analysis(CASA) system (컴퓨터 정액자동분석에 의한 동결융해 한우 정액의 운동특성 연구)

  • Lee, Kang-nam;Lee, Byeong-chun;Kim, Jung-tae;Park, Jong-im;Shin, Tae-young;Hwang, Woo-suk
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.898-908
    • /
    • 1998
  • The aim of this experiments were to assess the time-interval change of motional characteristics in frozen-thawed semen of Korean native cattle (KNC) by using computer aided semen analysis (CASA) technology. Twenty-six KNC frozen semen straws were obtained from Korean KNC improvement department, livestock improvement main division, national livestock cooperatives federation in Korea. Specimens were allowed to thaw at $37^{\circ}C$ for 30 sec in water bath. Semen analysis was performed on semen image analysis system (SIAS, Medical supply, Korea) adjusted to the gate settings and used the semen droplet ($5{\mu}l$) placed on Makler counting chamber (Sefi medical instrument, Israel) prewarmed at $37^{\circ}C$. The same person used the same micropipette to fill the Makler counting chamber. A total of 150 or more of sperms were analysed in each specimen by a single trained person by scanning at least 5 to 10 fields. The measurement parameters in SIAS were as follows ; frame rate = 30 frames per sec, image capture = 1 sec, minimum motile speed = $10{\mu}m/s$, maximum countable sperm number = 400. Statistical analysis was done by Student t-test with use of the Sigma plot program on a IBM personal computer. The dancemean(DNM) and hyperactivated sperm(HYP) of frozen-thawed KNC semen kinematics were significantly decreased(p < 0.05) after 10 min of incubation at $37^{\circ}C$ water bath. But, wobble(WOB) of same sample semen was significantly increased(p < 0.05) after 10 min of incubation and significantly decrease(p < 0.05) after 60 min of same incubation. And, after 30 mim of incubation, significantly differences were found most of motion kinematics, motifity(MOT), curvilinear velocity(VCL), straight line velocity(VSL), average path velocity(VAP), amplitude of lateral head displacement(ALH), beat cross frequency(BCF), mean angular displacement(MAD), dance(DNC), on same sample semen. The DNM of KNC semen sample was variable kinematics after 30 min of incubation. Also, the linearity(LIN) and straightness(STR) was significantly decreased(p < 0.05) from 60 min of incubation. In conclusion, the AI within 30 min after thawing of frozen semen can be an effective method for obtaining high fertility rate in KNC reproductive program.

  • PDF

The Transfection of Caldesmon DNA into Primary Cultured Rat Aortic Vascular Smooth Muscle

  • Choi, Woong;Ahn, Hee-Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.597-603
    • /
    • 1999
  • Caldesmon (CaD), one of microfilament-associated proteins, plays a key role in microfilament assembly in mitosis. We have investigated the effects of overexpression of the high molecular weight isoform of CaD (h-CaD) on the physiology of vascular smooth muscle cells (VSMCs). Rat aortic VSMCs were stably transfected with plasmids carrying a full length human h-CaD cDNA under control of cytomegalovirus promoter. The majority of the overexpressed h-CaD appears to be localized predominantly on cytoskeleton structures as determined by detergent lysis. The overexpression of h-CaD, however, does not decrease the level of endogenous low molecular weight isoform of CaD. h-CaD overexpressing VSMCs (h-CaD/VSMCs) show a decreased growth rate than that of vector-only transfected cells when determined by $[^3H]thymidine$ uptake and cell counting after fetal bovine serum (FBS) stimulation. h-CaD/VSMCs were smaller than vector-transfected cells by 18% in cell diameter. These data suggest that overexpression of h-CaD can inhibit the poliferation and the cell volume of VSMCs stimulated by growth factors and that the gene therapy with h-CaD may be helpful to prevent the conditions associated with hypertrophy and/or hyperplasia of VSMCs after arterial injuries.

  • PDF

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

The Evaluation of Mechanical Properties on the Changes of Microstructure for Titanium Alloy (Ti-6Al-4V) (티타늄 합금(Ti-6Al-4V)의 조직변화에 따른 기계적 특성 평가)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.609-616
    • /
    • 2002
  • The characteristics of mechanical behavior are investigated for Ti-6Al-4V alloy. Four kinds of the specimens are prepared under different heat treatments in order to produce different microstructures. In the present investigations, impact, tensile and fatigue crack growth tests are performed for each test specimen. The results obtained through the investigations are compared. Additionally fr actal dimensions of crack pass are obtained using the box counting method. The results are, 1) the microstructures shows as equiaxed, bimodal and Widmanstatten microstructures respectively, 2) the impact energy and elongation are superior fur the bimodal microstructure, and the hardness and tensile strength are superior fur the Widmanstatten microstructure, 3) the fatigue crack growth rate is similar to all microstructures in low ΔK region while that of equiaxed microstructure is the largest, and that of Widmanstatten microstructure is the lowest in high ΔK region respectively, 4) the fractal dimension D of Widmanstatten microstructure shows higher value than that of the equiaxed and bimodal microstructures under 200 magnification view of the SEM micrographs.

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

The Influence of Water Temperature and Salinity on the Filtration Rates of the Short-necked clam, Ruditapes philippinarum (수온과 염분 변화에 따른 바지락의 여과율 변동)

  • Shin, Hyun-Chool;Lim, Kyeong-Hun
    • The Korean Journal of Malacology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The present study was performed to describe the influence of water temperature and salinity on the filtration rates of the short-necked clam, Ruditapes philippinarum. The clams were collected at tidal flat near Yeosu city, Cheollanamdo, Korea, from July 2001 to August 2001. Diatoms, Phaeodactylum tricornutum (KMCC B-128), were indoor-cultured by f/2 medium, and were used to measure the filtration rate of the clams. Filtration rates of the clams were measured by indirect method. Cell concentrations of food organisms were determined by direct counting cells using the hemacytometer under the light microscope. The filtration rate of the clams increased with temperatures up to the optimum temperature, circa 25$^{\circ}C$. Above this optimum temperature, the filtration rate decreased drastically. Also the filtration rate of the clams increased with salinity up to 35 psu. The maximal filtration rates of the clams were recorded at 20-25$^{\circ}C$, similar to be known as the optimal temperature for their growth, and 25-35 psu, respectively. The minimal filtration rates of the clams were recorded at 5$^{\circ}C$ and 15 psu. At the similar temperature and salinity, the filtration rate of the younger clams was higher than that of the older ones. Thermal coefficient, Q$_{10}$ values at low temperature range were much higher than those at high temperature range. These results indicate the short-necked clam is more sensitive in cold water. As they grow up, they become more stronger against their ambient environmental changes, such as thermal-shock, salinity changes.

  • PDF

Comparison between Labor Inputs by Quantity per Unit Method and by Actual Data Method in the Apartment Housing Construction Work - Focusing on Masonry Plaster Waterproofing Tile Labors - (공동주택 건설공사의 표준품셈과 실투입 노무량 비교 분석 - 미장, 방수, 조적, 타일공사를 중심으로 -)

  • Jeon, SangHoon;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.110-118
    • /
    • 2015
  • The standard production unit system is the most basic element in our country construction. However, this standard production unit system shows a large difference in the actual amount of labor input for works at the Apartment housing construction, Therefore, it may be a reasonable alternative to estimate the cost of construction by historical cost data, works will be calculated the cost of labor must determine the exact amount and It is necessary to determine the exact amount of labor input for the construction progress management. This study examines the results of comparing the standard production unit system and the actual amount of labor counting in apartment housing construction was completed in the metropolitan area since 2000, the following results were obtained. the actual amount of labor input are looked for 1.184person/1000 of masonary, $0.084persons/m^2$ of plaster, $0.039persons/m^2$ of Waterproofing, $0.059persons/m^2$ of tile at the Apartment housing construction. in the actual amount of labor counting Compared with standard production unit system, masonry ratio of 59.8%, plaster ratio of 41.3%, waterproofing ratio of 31.5%, tile ratio of 34.3% and The labor rate in the works was the lowest in the plaster. was relatively high in the masonary. Therefore, the amount of labor country apartment housing construction is preferably calculated on historical cost data. But it seems that the amount of labor necessary complement ongoing close enough to the actual standard production unit system a major variable in construction management.

Development of Tetraploid Watermelon Using Chromosome Doubling Reagent Treatments (염색체 배수화제를 이용한 4배체 수박품종 개발)

  • Oh, Sang A;Min, Kwang Hyun;Choi, Yong Soo;Park, Sang Bin;Kim, Young Cheol;Cho, Song Mi
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.656-664
    • /
    • 2015
  • To produce high quality watermelon, three tetraploid watermelon breeding lines (‘SA03-1’, ‘SA06-1’ and ‘SB01-1’) were developed by treatment with different chromosome doubling reagents. To identify the optimal tetraploid inductive conditions, the three watermelon breeding lines were selected by counting the number of doubled chloroplasts in guard cells. Tetraploid induction rates differed depending on the genotypes and treatment with doubling reagents. However, the highest induction rate occurred with 1.0% colchicine (82.2%). These putative tetraploid lines were re-confirmed for ploidy using flow cytometric analysis and chromosome counting. The internode length of the tetraploid breeding lines was different when the leaf size was larger in all three tetraploid lines compared to their diploids. The fruit weight of the tetraploid fruits for ‘SA03-1’ and ‘SB01-1’ was lower than for their diploid, and the rind thickness and total sugar content (°Brix) of tetraploid SB01-1 were significantly different from those of its diploid. Tetraploid lines were sterile, yielded a lower number of seeds per fruit for ‘SA03-1’ (21), ‘SA06-1’ (62), and ‘SB01-1’ (34.7), and the seeds were larger and thicker than those of their diploids. These tetraploid breeding results will be useful for breeding new seedless watermelon cultivars.

Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process (역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성)

  • Jung, Ji-Yeon;Lee, Jin-Wook;Kim, Sung-Youn;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.