• Title/Summary/Keyword: High angles of attack

Search Result 67, Processing Time 0.026 seconds

A COMPUTATIONAL STUDY OF HEMISPHERE-CYLINDER FLIGHT VEHICLE AT HIGH ANGLES OF ATTACK AND SIDE SLIP (HEMISPHERE-CYLINDER 비행체의 고앙각과 SIDE SLIP에서의 거동해석 연구)

  • Na, Chae-Rok;Lim, Seol;Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.142-146
    • /
    • 2006
  • The behavior of a hemisphere-cylinder flight vehicle at high angles of attack and side slip angles have been studied. $0^{\circ}{\sim}35^{\circ}$ angles of attack and $0^{\circ}{\sim}5^{\circ}$ side slip angles were selected as fright conditions at Mach No. 0.3. Flow changes from low angles of attack to high angles of attack were compared and analyzed. We changed from low to high angles of attack with small side slip angles. We compared normal, side and axial force coefficients among various test cases.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTEX OF TANGENT-OGIVE-CYLINDER FLIGHT VEHICLE AT HIGH ANGLES OF ATTACK (Tangent-Ogive-Cylinder 비행체의 고앙각에서의 비대칭 와류 특성 연구)

  • Lim, S.;Kim, S.D.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.3-7
    • /
    • 2007
  • The characteristics of asymmetric vortex and side force of tangent-ogive-cylinder flight vehicle at high angles of attack have been performed by using upwind Navier-Stokes method with the ${\kappa}-{\omega}$ turbulence model. And Asymmetric transition positions are considered for generation of asymmetric vortex.

  • PDF

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK (세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구)

  • Jung S.K.;Jung J.H.;Myong R.S.;Cho T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

Vortical Flows over a Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1042-1051
    • /
    • 2004
  • The vortex flow characteristics of a sharp-edged delta wing at high angles of attack were studied using a computational technique. Three dimensional, compressible Reynolds-averaged Navier-Stokes equations were solved to understand the effects of the angle of yaw, angle of attack, and free stream velocity on the development and interaction of vortices and the relationship between suction pressure distributions and vortex flow characteristics. The present computations gave qualitatively reasonable predictions of vortical flows over a delta wing, compared with past wind tunnel measurements. With an increase in the angle of yaw, the symmetry of the pair of leading edge vortices was broken and the vortex strength was decreased on both windward and leeward sides. An increase in the free stream velocity resulted in stronger leading edge vortices with an outboard movement.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

A Numerical Study on Unsteady Flowfield around a NACA 0021 Airfoil at High Angles of Attack (고영각 NACA 0021 익형 주위의 비정상 유동장에 대한 수치해석적 연구)

  • Kim, Sang Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.12-17
    • /
    • 2020
  • Even though the benefit of flight at high angle-of-attack is to be able to reduce the speed of flight and maneuvers in complex flight environment, the flight at high angle-of-attack, however, is easy to be in stall which is characterized by sever unsteady flow separation over an airfoil. Current unsteady numerical analysis using DES was conducted to predict the aerodynamic characteristics of a NACA 0021 airfoil at high angle-of-attack conditions. And this provides the comparison with the steady numerical one with the typical turbulence models. The unsteady calculation by DES is appropriate in terms of predicting the aerodynamic performance of NACA 0021 airfoil at high angle-of-attack conditions.

A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack (NACA 0021 익형 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.