• Title/Summary/Keyword: High accurate scheme

Search Result 248, Processing Time 0.033 seconds

STUDY ON HIGH RESOLUTION SCHEMES SUITABLE FOR AN 3-D CFD CODE(POWERCFD) USING UNSTRUCTURED CELL-CENTERED METHOD AND INTERFACE CAPTURING METHOD (비정렬 셀 중심방법 및 경계면포착법을 사용하는 3차원 유동해석코드(PowerCFD)에 적합한 HR 해법에 관한 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are comparatively studied with respect to the accurate capturing of fluid interfaces throughout the application to two typical test cases of a translation test and a collapsing water column problem with a return wave. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method and an interface capturing method, which is based on the finite-volume technique and fully conservative. The calculated results show that SMART scheme gives the best performance with respect to accuracy and robustness.

STUDY ON HIGH RESOLUTION SCHEMES IN INTERFACE CAPTURING METHODS WITH UNSTRUCTURED GRIDS (비정렬격자계를 사용하는 경계면포착법에서 HR도식에 관한 연구)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.51-56
    • /
    • 2006
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are applied to two typical test cases of a translation test and a collapsing water column problem for the accurate capturing of fluid interfaces. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method, which is based on the finite-volume technique and fully conservative. The calculated results are found to show that SMART scheme gives the best performance with respect to accuracy and robustness.

  • PDF

NUMERICAL SIMULATION OF HIGH-SPEED FLOWS WITH SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTIONS (충격파와 난류경계층의 상호작용에 대한 수치해석)

  • Moon S. Y.;Sohn C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.51-59
    • /
    • 2000
  • The Interactions of shock wave with turbulent boundary layers in high-speed flows cause complex flowfields which result in increased adverse pressure gradients, skin friction and temperature. Accurate and reliable prediction of such phenomena is needed in designing high-speed propulsion systems. Such analyses of the complex flowfields require sophisticated numerical scheme that can resolve interactions between shock wave and boundary layers accurately. Therefore the purpose of the present. article is to introduce an accurate and efficient mixed explicit-implicit generalized Galerkin finite element method. To demonstrate the validity of the theory and numerical procedure, several benchmark cases are investigated.

  • PDF

Probabilistic Behavior of Laminated Composite Plates with Random Material Properties (재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동)

  • Noh, Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

Comparison of Two Viscous Models for Vortex Methods (와법에 사용되는 2가지 점성모델의 비교)

  • Jung, Jae-Hoon;Yoon, Jin-Sup;Jin, Dong-Sik;Ahn, Cheol-O;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.518-523
    • /
    • 2001
  • Vortex methods were originally conceived as a tool to model the evolution of unsteady, incompressible, high Reynolds number flows of engineering interest. Recently various methods have been proposed for simulating the diffusion in vortex methods for two-dimensional incompressible flows. We test the diffusion schemes of vortex methods. In this paper we directly compare the particle strength exchange scheme with the vorticity redistribution scheme in tenus of their accuracy and computational efficiency. Comparisons between both viscous models described are presented for short-time runs of impulsively started flows past a circular cylinder for Reynolds number of 60. The particle strength exchange scheme has been shown more accurate and efficient than the vorticity redistribution scheme.

  • PDF

Fractional Step Method wi th Compact Pade' Scheme (Compact Pade' Scheme을 이용한 Fractional Step Method)

  • Chung Sang-Hee;Park Warn-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.27-30
    • /
    • 2002
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. In this study, 3-dimensional unsteady incompressible Wavier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade' scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF

Efficient Calculation of Gas-kinetic BGK scheme for Analysis of Inviscid and Viscous Flows (점성 및 비점성 유동장 해석을 위한 BGK 수치기법의 효율적 계산)

  • Chae, Dong-Suk;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 1998
  • From the Boltzmann equation with BGK approximation, a gas-kinetic BGK scheme is developed and methods for its efficient calculation, using the convergence acceleration techniques, are presented in a framework of an implicit time integration. The characteristics of the original gas-kinetic BGK scheme are improved in order for the accurate calculation of viscous and heat convection problems by considering Osher's linear subpath solutions and Prandtl number correction. Present scheme applied to various numerical tests reveals a high level of accuracy and robustness and shows advantages over flux vector splittings and Riemann solver approaches from Euler equations.

  • PDF

Carrier Tracking Loop Design Using FLL-assisted PLL Scheme for Galileo L1F Channel (갈릴레오 L1F 채널에서 FLL-assisted PLL 기술을 이용한 반송파 추적 설계)

  • Choi, Seung-Duk;Lee, Sang-Kook;Hawng, In-Kwan;Shin, Cheon-Sig;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1217-1224
    • /
    • 2008
  • The carrier tracking has to be basically completed for accurate positioning of Galileo satellite system. The FLL for tracking frequency errors is robust to dynamic stress causing changes of propagation time but hardly tracks accurate carrier tracking. The PLL for tracking phase errors provides accurate carrier tracking but is sensitive to dynamic stress and its tracking performance is decreased when high dynamics exist. In this paper, we design the carrier tracking loop with the FLL-assisted PLL loop filter and co-operations of FLL and PLL to achieve accurate carrier tracking in high dynamic stress. we prove the performance of designed carrier tracking loop via simulations.

Development of a High Accuracy Pure Upwind Difference Scheme (고차 정확도의 순수 상류 차분법의 개발)

  • Cho Ji Ryong
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).