• Title/Summary/Keyword: High Voltage DC Transmission

Search Result 95, Processing Time 0.032 seconds

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Design of DC Level Shifter for Daisy Chain Interface (Daisy Chain Interface를 위한 DC Level Shifter 설계)

  • Yeo, Sung-Dae;Cho, Tae-Il;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.479-484
    • /
    • 2016
  • In this paper, a design of DC level shifter transmitting and receiving control and data signal which have various DC level through daisy chain interface between master IC and slave is introduced in the cell voltage monitoring (CVM). Circuit designed with a latch structure have a function to operate in high speed and for output of variable DC level through transmission gate. As a result of the simulation and the measurement, it was confirmed that control and data signal could be transferred according to the change of DC level from 0V to 30V. Delay time was measured about 170ns. but, it was considered as a negligible tolerance due to a parasitic capacitance of measuring probe and test board.

On the evolutionary technological trajectory using patent citation network and dynamic technology tree analysis: a case study of HVDC(High Voltage DC transmission system (특허 인용 네트워크와 동적 기술트리 분석을 활용한 기술 진화 경로 연구: 초고압 직류송전 시스템 사례)

  • Kim, Jun-Mo;Shin, Juneseuk
    • Journal of Technology Innovation
    • /
    • v.22 no.4
    • /
    • pp.117-143
    • /
    • 2014
  • Tracing an evolutionary technological trajectory in the macroscopic viewpoint is useful for technology policy, but not for corporate technology and intellectual property strategy. Tackling this issue, recent bibliometric studies using patents and papers have made efforts to identify more specific and detailed technological trajectory. However, these studies cannot go beyond simple description of the past trajectory. Also, identification of technology fusion and evolution relies on experts judgments. We suggest a way of identifying microscopic evolutionary technological trajectories by combining patent citation network analysis with dynamic technology tree. Also, using new indicators of generality, diversity and novelty, we can detect key technologies that can be a starting point of next generation technology and derivative technology. HVDC(High Voltage DC transmission) system technology is exemplified.

Economic Assessments of LFAC and HVDC Transmissions for Large Offshore Wind Farms

  • Park, Taesik;Kwak, Nohong;Moon, Chaeju;Cha, Seungtae;Kwon, Seongchul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Offshore wind farms extend a distance from an onshore grid to increase their generating power, but long distance and high power transmissions raise a lot of cost challenges. LFAC (Low Frequency AC) transmission is a new promising technology in high power and low cost power transmission fields against HVDC (High Voltage DC) and HVAC (High Voltage AC) transmissions. This paper presents an economic comparison of LFAC and HVDC transmissions for large offshore wind farms. The economic assessments of two different transmission technologies are analyzed and compared in terms of wind farm capacities (600 MW and 900 MW) and distances (from 25 km to 100 km) from the onshore grid. Based on this comparison, the economic feasibility of LFAC is verified as a most economical solution for remote offshore wind farms.

Bi-polar High-voltage Pulse Generator Using Semiconductor switches (반도체 스위치를 이용한 양방향 고압 펄스 발생기)

  • Kim J.H.;Ryu M.Y.;Jung I.W.;Shenderey S.;Kim J.S.;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.291-293
    • /
    • 2003
  • A semiconductor switch-based fast hi-polar high voltage pulse generator is proposed in this paper The proposed pulse system is made of a thyristor based-rectifier, DC link capacitor, a push-pull resonant inverter, a high voltage transformer. secondary capacitor, a high voltage IGBT & diode stacks, and a variable capacitor. The proposed system makes hi-polar high voltage sinusoidal waveform using resonance between leakage inductance of the transformer and secondary capacitor and transfers energy to output load at maximum of the secondary capacitor voltage. Compared to previous hi-polar high voltage pulse power supply using nonlinear transmission line, the proposed pulse power system using only semiconductor switches has simple structure and gives high efficiency

  • PDF

A Development of Reduced-scale Model to Predict of Environmental Characteristics of AC/DC Hybrid Overhead Transmission Line (AC/DC 하이브리드 선로의 전기환경특성 예측을 위한 축소모델 개발)

  • Choi, In-Hyuk;Shin, Koo-Yong;Lee, Dong-Il;Lim, Jae-Seop;Kim, Young-Hong;Maeng, Jong-Ho;Ju, Mun-No
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.676-682
    • /
    • 2012
  • To review application of HVDC (High Voltage Direct Current) transmission line to HVAC T/L in operation, reduced-scale model was designed and manufactured. The arms of model were designed to change height and interval of conductors. Electrical environmental interferences were estimated by various configuration of AC 345kV and DC 250kV T/L. The interferences such as electric field intensity and ion current density were measured and converted reduced-scale factor to full-scaled. Additionally, effects between AC and DC T/L were studied.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

The Characteristics of Terahertz Electromagnetic Pulses by Different Bias Voltage (전압 변화에 따른 테라헤르츠 전자기 펄스의 변화 특성)

  • 전태인;김근주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.479-482
    • /
    • 2001
  • We have measured terahertz electromagnetic pulses when DC voltage from V up to 90V is applied to the transmitter chip excited by femto-second laser pulse. The femto-second excitation laser pulse was injected to transmitter chip. Finally, we are observed the amplitude of electromagnetic pulse and variation of spectrum. Consequently, the amplitude of spectrum was increased to high frequency according to increase of voltage. At that time, the signal-to-noise rate(SNR) is increased from 250:1 to 10, 000:1.

  • PDF

The characteristics of Resonant class ${\phi}_2$ Inverter for short range wireless power transmission (근거리 무선전력전송용 공진형 Class ${\phi}_2$ 인버터 동작 특성)

  • Yang, Hae-Youl;Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.13-14
    • /
    • 2011
  • The power conversion converter for driving the wireless power transfer system is can be into the two part of the DC power conversion rectifier and the high frequency dc-ac power conversion inverter. In this paper, The operating characteristics of the Class-${\Phi}_2$ resonant inverter have been investigated through by simulation and by experiment. It can be switched at a high frequency without the switching losses and the harmonics are reduced effectively due to the input LC filter. Its switching frequency is 1MHz and the input voltage is 96V which is the output voltage of LLC resonant converter. And its output peak voltage is 170V. The resonant inverter module operated at the commercial power source of 220V was built. And also the electromagnetic coupled resonance coils were designed for wireless power transfer with a 1MHz operating frequency. As a experimental result, the wireless power transmission was confirmed and it is varified the validity of the experiment.

  • PDF

A Design and Implementation of a Prototype Microwave Power Transmission System (마이크로파 전력전송시스템의 프로토타입 설계 및 구현)

  • Park, Min-Woo;Park, Jin-Woo;Back, Seung-Jin;Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2227-2235
    • /
    • 2009
  • This paper describes the system configuration and measured performances of a wireless power transmission system which utilizes microwave. The technically final target of this system is to provide DC power to various mobile terminals within limited spaces such as buildings, conference rooms, and so on. The prototype system is built using in-house designed and fabricated circuits such as microwave oscillator, high power amplifier, microstrip patch antenna, low pass filter, and detector/rectifier. The fixed RF power of 29.3dBm at 2.4GHz is produced from the high power amplifier and transmitted through the transmitting antenna, while the received RF power at the receiving antenna is transformed into DC power through the detector/rectifier. The measured change of DC voltage according to the distance between transmitting and receiving antenna is described.