• Title/Summary/Keyword: High Uniformity

Search Result 994, Processing Time 0.029 seconds

Bi-material Bolus for Minimizing the Non-uniformity of Proton Dose Distribution

  • Takada, Yoshihisa;Kohno, Syunsuke
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.214-215
    • /
    • 2002
  • Generally uniform dose distribution is assumed to be formed in a target region when a conventional dose formation method using a broad proton beam, a fixed modulation technique, a bolus and an aperture is employed. However, actual situations differ. We usually find non-uniformity in the target region. This is due to the insertion of a range-compensating bolus before the patient. Since the range-compensating bolus has an irregular shape, the scattering in the bolus depends on the lateral position. Dose distribution is overlapping results of dose distribution of pencil-proton beams traversing different lateral positions of the bolus. The lateral extent of dose distribution of each pencil beam traversing the different position differs each other at the same depth in the target object. This is a cause of the non-uniformity of the dose distribution. Therefore the same lateral extent of dose distribution should be attained for different pencil beams at the same depth to obtain a uniform dose distribution. For that purpose, we propose here a bi-material bolus. The bi-material bolus consists of a low-Z material determining mainly the range loss and a high-Z material defining mainly the scattering in the bolus. After passing through the bi-material bolus, protons traversing different lateral positions will have different residual range yet with the same lateral spread at a certain depth. Using the optimized bi-material bolus, we can obtain a more uniform dose distribution in the target region as expected.

  • PDF

Performance analysis of light guide panel implemented with laser-processed inner and surface patterns (레이저 가공된 내부 및 표면패턴을 가지는 도광판 성능 분석)

  • Choi, Young-Hee;Shin, Yong-Jin;Choi, Eun-Seo
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • We proposed new light guide panel (LGP) fabrication method exploiting laser-processed inner scatterers and surface pattern. The proposed method has achieved LGP performance improvement in both brightness and uniformity. The inner scatterers and surface pattern of grid type were fabricated with a 2nd harmonic Nd:YAG pulse laser engraving system and a $CO_2$ laser scanning system, respectively. In the implementation of LGP, inner scatterers was arranged in accordance with linear or curved pattern with changing density and surface pattern was engraved on the surface of an inner-scatterers embedded LGP. The increase of scatterers' density and the use of surface patterns in both linear and curved pattern provided high luminance and uniformity enhancement. While thecurved pattern incorporated with increased scatterers' density and surface patterns yielded brightness improvement with preserving good uniformity, the linear pattern showed highly localized brightness near the light entrance of the LGP. We can also observe that the uniformity was mainly determined by pattern of inner scatterers, and the brightness was improved by the higher density and the utilization of surface patterns. From the results, the use of laser-processed inner and surface patterns can be a potential alternative for efficient and simple LGP fabrication method.

  • PDF

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Plasma Uniformity Control Technology for Dry Etching (ICP Dry etcher) Equipment for Medium and Large Displays (중·대형 디스플레이용 건식 식각(ICP Dry etcher) 설비의 플라스마 균일도 제어 기술)

  • Hong, Sung Jae;Jeon, Honggoo;Yang, Ho Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.125-129
    • /
    • 2022
  • The current display technology tends to be highly integrated with high resolution, the element size is gradually downsized, and the structure becomes complicated. Inductively coupled plasma (ICP) dry etcher of various types of etching equipment is a structure that places a large multi-divisional antenna source on the top lid, passes current to the Antenna, and generates plasma using the induced magnetic field generated at this time. However, in the case of a device of a large area size, a support that can withstand a load structurally is necessary, and when these support portions are applied, arrangement of antenna becomes difficult, which causes reduction in uniformity. As described above, the development of antenna source of a large area having a uniform plasma density on the whole surface is difficult to restrict hardware (H/W). As a solution to this problem, we confirmed the change in uniformity of plasma by applying two kinds of specific shape faraday shield(FICP) to the lower part of the large area upper lid antenna of 6 and 8th more than that generation size. In this thesis, we verify the faraday shield effect which can improve plasma uniformity control of ICP dry etcher equipment applied to medium and large displays.

A Study of Brightness and Residual Stresses Depending on Thickness of LCD Light Guide Plate (LCD 도광판 두께에 따른 휘도 및 잔류응력에 관한 연구)

  • Lee, Joong-Won;Park, Myung-Kyun;Kim, Jung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.38-44
    • /
    • 2008
  • Light guide plate is one of most important components which are composed of back light unit, affecting the quality and performance of LCD. Average brightness and uniformity are especially key factors for designing the light guide unit. These qualities are affected and controlled by the pattern being attached to the back of light guide unit. In order to obtain high brightness and uniformity the optimized pattern design is adopted for LGP. In this study, optimized molding condition for LGP with 0.4 mm thickness was obtained by using the Moldflow simulation software and the optimized pattern for better brightness uniformity was designed for the thickness of the 0.4 mm by trial and error method. The brightness was measured for the different LGP thicknesses and the residual stress analysis was performed for 0.4 mmthickness by the photoelasticity and the results are compared with 0.5 mm, 0.6 mm thickness.

Non Uniformity Error of MSC (Multi Spectral Camera) System

  • Jang YoungJun;Yong SangSoon;Kang KeumSil;Kim JungAh;Kang SungDuk;Youn HeongSik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.432-435
    • /
    • 2004
  • MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. In this application, uniformity characteristic is important as well as GSD (Ground Resolved Distance) and SNR (Signal to Noise Ratio). MSC image chain is consisted of OM (Optical Module), CCD, Video processor, NUC and DCSU (Data Compression and Storage Unit). Each block makes and corrects MSC's nonuniformity response. This paper shows the cause of nonuniformity error and the correction scheme of MSC system from the electronic point of view.

  • PDF

KOMPSAT-2 NON-UNIFORMITY CORRECTION ALGORITHM (다목적 실용위성2호의 NON-UNIFORMITY CORRECTION 알고리즘)

  • Park, Su-Young;Song, Jeong-Heon;Lee, Dong-Han;Seo, Doo-Chun;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.305-307
    • /
    • 2007
  • KOMPSAT-2(K-2) 의 MSC 는 CCD pixel 별 band 별 특성, 감도 및 시간에 따른 변화, CCD Geometry 등에 의해 왜곡 현상이 일어나며 위성 발사 전에 실험실에서의 충분한 실험과 Calibration 작업 을 통해 얻어진 값들을 사용하여 Image Restoration, 상대 복사 보정, 절대 복사 보정 등의 작업들을 거쳐서 왜곡 현상을 보정하게 된다. 그 중 복사 보정에 해당하는 NUC(NonUniformity Correction)은 MSC 각각의 픽셀들이 상이한 특성을 나타내는 것을 균일한 이미지로 보정하는 작업으로 무엇보다 우선시 되는 검보정 작업이다. K-2 NUC table 생성에는 시스템 특성상 몇 가지 사항을 고려 하여 위성에 upload 하는 high frequency NUC(HF NUC)과 지상국에서 처리할 수 있는 low frequency NUC(LF NUC)으로 구분하여 알고리즘을 생성하였다.

  • PDF

Wavelet Characterization of Profile Uniformity Using Neural Network

  • Park, Won-Sun;Lim, Myo-Teak;Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.46.5-46
    • /
    • 2002
  • As device dimension shrinks down to sub 100nm, it is increasingly important to monitor plasma states. Plasma etching is a key means to fine patterning of thin films. Many parameters are involved in etching and each parameter has different impact on process performances, including etch rate and profile. The uniformity of etch responses should be maintained high to improve device yield and throughput. The uniformity can be measured on any etch response. The most difficulty arises when attempting to characterize etched profile. Conventionally, the profile has been estimated by measuring the slope or angle of etched pattern. One critical drawback in this measurement is that this is unable to cap...

  • PDF

3-D Characterizing Analysis of Buried-Channel MOSFETs (매몰공핍형 MOS 트랜지스터의 3차원 특성 분석)

  • Kim, M. H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.162-163
    • /
    • 2000
  • We have observed the short-channel effect, narrow-channel effect and small-geometry effect in terms of a variation of the threshold voltage. For a short-channel effect the threshold voltage was largely determined by the DIBL effect which stimulates more carrier injection in the channel by reducing the potential barrier between the source and channel. The effect becomes more significant for a shorter-channel device. However, the potential, field and current density distributions in the channel along the transverse direction showed a better uniformity for shorter-channel devices under the same voltage conditions. The uniformity of the current density distribution near the drain on the potential minimum point becomes worse with increasing the drain voltage due to the enhanced DIBL effect. This means that considerations for channel-width effect should be given due to the variation of the channel distributions for short-channel devices. For CCDs which are always operated at a pinch-off state the channel uniformity thus becomes significant since they often use a device structure with a channel length of > 4 ${\mu}{\textrm}{m}$ and a very high drain (or diffusion) voltage. (omitted)

  • PDF

Simulation and Measurement of Characteristic in 450 mm CCP Plasma Source

  • Park, Gi-Jeong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.508-508
    • /
    • 2012
  • CST microwave studio is used to simulate the plasma profile of the 450mm CCP source. Standing wave effect becomes important at the high frequency as the electrode radius increases. To solve plasma non-uniformity problem, we designed multi electrode chamber to decreasing standing wave effect. Simulation showed the ratio of input power of each electrode is related with electric field strength. The multi electrode was constructed and measured by 2D probe arrays using floating harmonic method. Uniformity of 450 mm CCP was changed by the ratio of input power of each electrode. We described this dependence with circuit model.

  • PDF