Browse > Article

Plasma Uniformity Control Technology for Dry Etching (ICP Dry etcher) Equipment for Medium and Large Displays  

Hong, Sung Jae (Display Business Department, WONIK IPS)
Jeon, Honggoo (Display Business Department, WONIK IPS)
Yang, Ho Sik (Display Business Department, WONIK IPS)
Publication Information
Journal of the Semiconductor & Display Technology / v.21, no.3, 2022 , pp. 125-129 More about this Journal
Abstract
The current display technology tends to be highly integrated with high resolution, the element size is gradually downsized, and the structure becomes complicated. Inductively coupled plasma (ICP) dry etcher of various types of etching equipment is a structure that places a large multi-divisional antenna source on the top lid, passes current to the Antenna, and generates plasma using the induced magnetic field generated at this time. However, in the case of a device of a large area size, a support that can withstand a load structurally is necessary, and when these support portions are applied, arrangement of antenna becomes difficult, which causes reduction in uniformity. As described above, the development of antenna source of a large area having a uniform plasma density on the whole surface is difficult to restrict hardware (H/W). As a solution to this problem, we confirmed the change in uniformity of plasma by applying two kinds of specific shape faraday shield(FICP) to the lower part of the large area upper lid antenna of 6 and 8th more than that generation size. In this thesis, we verify the faraday shield effect which can improve plasma uniformity control of ICP dry etcher equipment applied to medium and large displays.
Keywords
ICP Dry Etcher; Large Area Display; Faraday Shield; Faraday Shield Effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. J. Mahoney, A. E. Wendt, E. Barrios, C. J. Richards and J. L. Shohet, J. Appl. Phys., 76, pp.2041, 1994.   DOI
2 L. G. Zhang, D. Z. Chen, D. Li, K. F. Liu, X. F. Li, R. M. Pan, M. W. Fan, Fusion Engineering and Design 103, pp74-80, 2016.   DOI
3 Y. J. Lee, K. N. Kim, B. K. Song, G. Y. Yeom, Mater. Sci. Semicond. Process., 5, pp419, 2003.   DOI
4 Y. Horiike, H. Okano, T. Yamazaki, H. Horie, Jpn. J. Appl. Phys., 20, ppL817, 1981.   DOI
5 M. H. Khater, L. J. Overzet, J. Vac. Sci. Technol. A, 19(3), pp785, 2001.   DOI
6 Y. Wu, M. A. Lieberman, Appl. Phys. Lett., 72, pp777, 1998.   DOI
7 M. Kanoh, K. Suzuki, K. Tonotani, K. Aoki, M. Yamage, Jpn. J. Appl. Phys., 40, pp5419, 2001.   DOI
8 J. L. Crowley, Solid State Technol., 35, pp94, 1992.
9 F. Mendoza, B. Sarette, D. McReynolds, B. Richardson, J. Holland, Semiconductor International., pp143, 1999.
10 C. Y. Chang, S. M. Sze, ULSI technology New York: McGraw-Hill, pp329, 1996.
11 P. W. Lee, D. Shaw, P. Gonzales, G. J. Collins, J. Vac. Sci. Technol. A, 13(3), pp871, 1995.   DOI
12 I. P. Ganachev, M. Moriyama, D. Ogawa and K. Nakamura, 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, 8-11 August, 2016.
13 I. Lin, D. C. Hinson, W. H. Class, R. L. Sandstrom, Appl. Phys. Lett., 44, pp185, 1984.   DOI
14 J. Hopwood, Plasma Sources Sci. Technol., 3(4), pp.460-464, 1994.   DOI