• Title/Summary/Keyword: High Thrust Density

Search Result 46, Processing Time 0.033 seconds

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

The Design and Magnetic Field Analysis of Moving Coil Type LDM by relation between thrust constant and size (가동코일형 LDM의 추력정수와 치수관계에 의한 자계해석과 설계)

  • Ryu, J.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.82-84
    • /
    • 1998
  • LDM(Linear DC Motor) are used in high speed, high-precision position control system. Because of these advatages, LDM has already used in the motor of pen-recorder, magnetic-disk devices. Under the limited dimension, we propose the design method of LDM by magnetic circuit. In this paper, a relation between the thrust constant and size of a LDM that is moving coil type with unipolar is described, which is defined as a simple relational equation. To maximize the rate of thrust to the volume of LDM, the magnetic flux density in the yoke is adjusted to the value of magnetic equation By the magnetic field analysis(FEM), the validity of the equation is confirmed.

  • PDF

Improvement of Thrust Force Characteristics by Micro-step Drive of 2 Phase 8 Pole HB type LPM (2상 8극 HB형 LPM의 마이크로스텝 구동에 의한 추력특성 개선)

  • Kim, Sung-Heon;Lee, Eun-Woong;Kim, Il-Jung;Jo, Hyun-Gil;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.140-142
    • /
    • 1997
  • After finding the harmonic components by measuring the thrust force, which affects high accuracy position control during micro-step drive of LPM, the exciting current was calculated to remove them. Also the detent force being induced by magnetic flux density of permanent magnetic was measured. It was comfirmed that the tooth and slot width was designed properly thresh the analysis of detent force.

  • PDF

Core Shape Design of Slotless PMLSM for High Power (Slotless PMLSM의 고출력 화를 위한 Core형상 설계)

  • Kim, Yong-Chul;Kim, Mi-Yong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.67-69
    • /
    • 2002
  • This paper present increasing of Power density of slotless PMLSM by inserting core between phase winding. PM width is changed and PM is divided into two part to reduce and eliminate high order space harmonics affecting torque ripple. Flux density, back EMF, inductance, thrust, normal and detent force are computed by 2D FEM, and analysis values are compared with each other.

  • PDF

Design and Characteristics Investigation of Air-core Tubular Linear BLDC Motor (공심슬롯 원통형 선형 BLDC 전동기의 설계 및 특성 고찰)

  • Moon, Ji-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.603-609
    • /
    • 2008
  • Slotless linear brushless DC motor are widely used in precision machine applications because of their advantages such as low of detent force, negligible iron loss. But they have a disadvantage such as low thrust density, thrust ripple, and excessive use of permanent magnet materials. These lead to undesirable performance and high production cost. In this paper, we deal with the design and characteristics investigation of a air-core tubular linear brushless DC(TLBLDC) motor with air-core stator and permanent magnet mover. And to investigate the static and dynamic characteristics of air-core TLBLDC motor, the prototype machine is manufactured and analyzed by F.E.M. and Matlab simulink simulations. Especially, dynamic characteristics of air-core TLBLDC motor driven with 6 step inverter are simulated by F.E.M.coupling with external circuit and Matlab simulink program, and measured for the prototype motor. The simulation results are compared to the experimental results such as current waves, thrust and speed curve.

Optimization of the design variables of linear motor by FEM (유한요소법에 의한 선형모터의 설계 변수 최적화)

  • Shin, Soo-Hyun;Lee, Sang-Ryong;Jung, Jae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1232-1240
    • /
    • 2002
  • Recently, linear motors are applied to many small precision products. Thus high generating power with small size is required of it. In order to increase the motor efficiency, the design variables need to be optimized. In this study, Vector Fields FEM software, OPERA-3d, was used for simulating linear motor. The thrust and magnetic flux density at the air-gap center were simulated and compared with the experimental results. Taguchi method was applied to investigate the effects of each variables. As a result, the thickness of conductor and magnet was important for the thrust but the thickness of the yoke. The temperature of the conductor was determined by finding the thermal conductivity that was determined by experimentation. Correlation equation relating to the thrust and temperature was proposed by Latin square and Least Square method. The optimum design variables were determined by correlation equation, and compared with simulation results. According to this analysis, thrust force of linear motor was improved about 7% comparing with conventional model.

The Design and Characteristic Analysis of Moving Coil Type LDM by thrust constant (추력정수에 의한 가동코일형 LDM의 특성해석과 설계)

  • Ryu, J.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Jung, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.196-199
    • /
    • 1998
  • LDM(Linear DC Motor) are used in high speed, high-precision position control system. Because of these advatages, LDM has already used in the motor of pen-recorder, magnetic-disk devices. Under the limited dimension, we propose the design method of LDM by magnetic circuit. In this paper, a relation between the thrust constant and size of a LDM that is moving coil type with unipolar is described, which is defined as a simple relational equation. To maximize the rate of thrust to the volume of LDM, the magnetic flux density in the yoke is adjusted to the value of magnetic equation. By the magnetic field analysis(FEM), the validity of the equation is confirmed.

  • PDF

Static Characteristics of a Moving-Coil-Type Linear Motor in Consideration of Interaction between PM and Armature Field (영구자석 계자와 전기자 자속의 상호작용 효과를 고려한 가동코일형 리니어모터의 정특성)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • A moving-coil-type linear motor, designed and fabricated, is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The interaction between permanent magmet and armature fie1d, so called "push/pull effect", is to shift the airgap flux density variation due to the magnet alone by a certain amount. Thrust therefore is shift downward or upward. The push/pull effect was presented through the FEM analysis and the static tests. We compared the thrust obtained through the FEM analysis with the static tests. Finally, we present the linearity and correction coefficients of the thrust in consideration of the push/pull effects.l effects.

  • PDF

Development of the Dual Thrust Rocket Motor with Two Kinds Propellant (이종추진제를 적용한 이중추력 추진기관 개발)

  • Kim, Kyungmoo;Kim, Jeongeun;Lim, Jaeil;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.58-67
    • /
    • 2021
  • This paper describes the development for the dual thrust rocket motor with two types of propellants with different combustion characteristics. We developed the composition of two kinds of propellant to be applied to a rocket motor, and improved a propellant charging process in a free grain type to improve the adhesion method and the problems of adhesion between different propellants. In addition, to meet the ignition phenomenon as a small rocket motor, the ignition delay was improved by applying a nozzle plug developed in a high density foam. The propulsion rocket motor reflecting this design and the improved manufacturing process was evaluated through a ground performance test.

Development and Experiments of the Low Power Hall Thruster for STSAT-3 (과학기술위성 3호 탑재를 위한 저전력 홀 추력기 개발 및 시험)

  • Lee, Jong-Sub;Seo, Mi-Hui;Seon, Jong-Ho;Choe, Won-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.298-302
    • /
    • 2009
  • Low power Hall thruster is under development as one of the core technologies for STSAT-3. The Hall thruster has several advantages such as its simple structure, high thrust density and specific impulse etc. Development target values deduced by analyzing requirements are consumed electrical power, thrust, thrust efficiency, and specific impulse of < 300 W, > 10 mN, ~ 35%, and > 1000 s, respectively. In order to achieve the target specifications, two prototype Hall thrusters were developed and compared. To date, thrust and efficiency are 11 mN and 37% under the total power of 290 W with 0.97 mg/s Xe propellent supply.

  • PDF