• Title/Summary/Keyword: High Tension Steel

Search Result 344, Processing Time 0.018 seconds

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.