• 제목/요약/키워드: High Tensile Steel

검색결과 1,067건 처리시간 0.037초

판재 특성에 따른 롤 성형 해석시 스프링백 연구 (A Study on the Springback of Sheet Characteristics for Roll forming Analsys)

  • 정진호;이영선;권용남;이정환;손성만;이문용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

Fe-18Cr-14Mn-4Ni-0.9N 고질소 내식강의 고온 석출과 변형률 속도에 따른 변형특성 연구 (Deformation behavior of the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel under different strain rate conditions)

  • 남승만;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2006
  • High nitrogen steels (HNS) exhibit both high strength and ductility during tensile deformation. In the present study the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel was heat treated at $1000^{\circ}C$ and $1100^{\circ}C$ to produce $Cr_2N$ precipitates in austenite matrix and full austenite microstructures, respectively. Tensile tests of the heat treated specimens were performed at two different strain rates of 0.05/sec and 0.00005/sec. Each tensile curve of the specimens could be well characterized by the the modified Ludwik equation. Plastic deformation of the steel was adequately represented by the four parameters of the modified Ludwik equation. At 0.05/s strain rate, the specimen with the $Cr_2N$ precipitate exhibited higher strength than the full austenite specimen, while the full austenite specimen showed better mechanical properties at 0.00005/s strain rate. It was found that the $Cr_2N$ precipitates influences deformation behavior of the high nitrogen steel significantly.

  • PDF

핵융합로 블랭킷용 저방사화 철강재료 TIG 용접부의 강도특성 (Strength Characteristics of Reduced Activation Ferritic Steel for Fusion Blanket by TIG Welding)

  • 윤한기;이상필;김동현
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.87-92
    • /
    • 2003
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), reduced activation ferritic steel, is one of the promising candidate materials for fusion reactor applications. Tensile properties of JLF-1 base metal and its TIG weldments has been investigated at the room temperature, $400^{\circ}C$ and $600^{\circ}C$. The tensile strength of base metal (JLF-1) showed the level between those of weld metal and the Heat Affected Zone (HAZ). When the test temperature was increased from room temperature to high temperature ($400^{\circ}C$ and $600^{\circ}C$), both strength and ductility decreased or base metal, weld metal and the HAZ. The longitudinal specimens of base metal represented similar strength and ductility at room temperature and high temperature, compared to those of transverse specimens. Little anisotropy for the rolling direction was observed in the base metal of JLF-1 steel.

고강도 TRIP 강의 스프링백에 대한 연구 (A Study on the Springback of High-Strength TRIP Steel)

  • 김용환;김태우;이영선;이정환
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.409-414
    • /
    • 2004
  • TRIP steel has got attention in automobile industry because of its high strength and high formability. However, the information on deformation behavior of TRIP steel, including bending and springback, is not enough until now. In this research, the V-die bending experiment and analysis have been done to obtain the information of springback of TRIP steel. And a new numerical method, where elastic modulus is varied with the change of the strain, was suggested. Tensile test for TRIP steel was done to get tensile properties as well as strain dependency of elastic modulus of the material. Strain-dependency of elastic modulus was used the numerical analysis of V-die bending and unbending process to predict springback amount. The results were compared with experiment, showing reasonable agreement. Through the analysis of V-die bending as well as draw bending of TRIP steel, the proposed scheme with variable elastic modulus was proven to well predict the deformation behavior of TRIP steel during bending and springback.

390MPa급 고장력강판의 경치기 레이저 용접에서 부분용입 용접의 적용 가능성에 대한 연구 (A Study on the Feasibility of Partial Penetration Laser Welding for the Lap Joint of 390MPa High Strength Steel Sheets)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.95-101
    • /
    • 2002
  • After high power lasers are avaliable in the commercial market, the number of applications of the laser welding has been increased in manufacturing industries. Although the tailored blank laser welding of butt jointed steel sheets is well known recently in the automotive industries, the lap joint laser welding is a new technology to the automotive manufacturing people as well as the design people. But the deep penetration laser welding seems to be preferred to the partial penetration welding for the lap joint welding in the automotive manufacturers because the partial penetration is a serious deflect for the butt joint. In this study, the feasibility of partial penetration welding fur the lap joint $CO_2$ laser welding was studied fur the 1mm thick 390MPa high strength steel sheets for automotive bodies. The process window of the lap joint partial penetration welding was obtained from experiments with the gap size and the welding speed as process parameters. The partial penetration welding was found excellent on the basis of the tensile shear strength and sectional geometry. The bead width, input energy Per volume, tensile-shear strength, deformation energy and the sectional geometries after tensile-shear tests of partial penetration welded specimens are compared with those of full penetration welded specimens with a series of gaps and welding speeds.

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Kim, Sung Jin;Kim, Kyoo Young
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.13-20
    • /
    • 2014
  • A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.

오스테나이트계 Fe-18Mn-18Cr-0.61N 고질소강의 인장 및 충격 특성에 미치는 냉간 가공의 영향 (Effect of Cold Working on Tensile and Charpy Impact Properties of a High-Nitrogen Fe-18Mn-18Cr-0.61N Austenitic Steel)

  • 이승용;이상인;황병철
    • 열처리공학회지
    • /
    • 제27권3호
    • /
    • pp.121-126
    • /
    • 2014
  • High-nitrogen Fe-18Mn-18Cr-N austenitic steels with higher yield strength have been recently developed and used for generator retaining rings because they have non-magnetic, high strength, high ductility, and good corrosion resistance. In the present study, a high-nitrogen Fe-18Mn-18Cr-0.61N austenitic steel was fabricated and then tensile and Charpy impact tests were conducted on them in order to investigate the effect of cold working on the mechanical properties. Although the yield and tensile strengths usually increased with cold working, the ductility and impact toughness significantly decreased after cold working. On the other hand, the high-nitrogen austenitic steel exhibited a ductile-brittle transition due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductile-brittle transition temperature obtained from Charpy impact tests could be remarkably increased by $60^{\circ}C$ after 20% cold working because of the enhanced cleavage-like brittle fracture.

고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구 (A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material)

  • 박명규;서창희
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

304L stainless Steel의 인장성질에 대한 변형온도, 변형속도 및 결정입도의 영향 (Effect of Deformation Temperature, Strain Rate and Grain Size on the Tensile Properties of 304L Stainless Steel)

  • 강창룡;성장현
    • 열처리공학회지
    • /
    • 제3권2호
    • /
    • pp.20-31
    • /
    • 1990
  • This investigation has been carried out to make clear the effect of deformation temperature, strain rate and grain size on the tensile properties of 304L stainless steel. Tensile properties of the metastable austenitic 304L steel remarkably influenced by deformation temperature. Tensile strength increased with decreasing deformation temperature and the elongation showed maximum value near $40^{\circ}C$. In order to obtain the high elongation, a large amount of deformation is available in austenite before martensitic transformation and the martensite has to be induced gradually. Tensile strength and elongation increased with decreasing grain size. The temperature representing the maximum elongation shifted to low temperature and the peak width of elongation became broaden with decreasing austenite grain size. The volume fraction of strain induced martensite decreased with decreasing austenite grain size. As the strain rate increase, the temperature representing the maximum elongation value shifted to high temperature and volume fraction of strain induced martensite decreased.

  • PDF