• 제목/요약/키워드: High Temperature Static Pressure Test

검색결과 25건 처리시간 0.025초

저온, 고압력용 강재 구조물의 용접부균열 발생과 그 대책에 관한 연구 (A study on the cracking mechanism of the welded parts in steel structures for the use of low temperature and high pressure)

  • 김영식;배차헌;구자영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.328-338
    • /
    • 1985
  • When the low temperature service steels are used as materials for welded structure, some problems-brittleness and weld cracking, etc.-occur in welded part due to the change of mechanical and metallurgical characteristics resulted from the thermal cycle during the welding procedure. In this study, the experiments were conducted to investigate the change of mechanical and metallurgical characteristics of the welded part for the low temperature and high pressure service steels. Moreover, the Static and Dynamic Implant Test Method was introduced to this study in order to find out the mechnism of weld cracking. In addition, the fracture toughnesses of welded bond were inspected under the various low temperature environments. Main results obtained are as follows; 1) The effect of the hydrogen on the fatigue characteristics of the weld bond can be estimated by the new self-contrived Dynamic Implant Test equipment. 2) The fine micro-structure and low hardness in the heat affected zone can be obtained by the small heat input multi-pass welding. 3) The susceptibility of the delayed cracking is largely affected by the condition of used electrode. 4) The transition temperature of the fracture surface in weld bond appears to be higher 20 .deg. C than that in base metal.

  • PDF

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향 (Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가 (Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space)

  • 김성광;안석환;남기우
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

다점 피토관을 이용한 기체 유량 측정의 불확도 평가 (Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes)

  • 양인영;이보화
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.

터보냉동기를 위한 실용적 모델링과 PI 제어기 설계 (Practical Modeling and PI Controller Design for Centrifugal Water Chillers)

  • 정석권;한성준;정영미
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.187-194
    • /
    • 2015
  • This paper describes the PI controller design based on a practical transfer function model for centrifugal water chillers. The rotational speed of a compressor and the opening angle of an electronic expansion valve were simultaneously regulated as manipulated variables to maintain temperature reference and to ensure high efficiency of the chiller. The COP according to the change in each variable was investigated by performing some static experiments, and it was reflected in the PI controller design to accomplish the high efficiency control. Especially, the practical transfer function model of the chiller was built based on the dynamic experimental data considering the strong inherent non-linearity and complexity of the chiller system. The validity of the designed PI controller was proven by some experimental results using the test facility and the results were also compared to the conventional evaporating pressure control results.

심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성 (Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations)

  • 김영훈;박성주;윤성원;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

소형 원심압축기의 성능평가에 대한 실험적 연구 (An Experimental Study on the Performance Evaluation of a Small-Sized Centrifugal Compressor)

  • 조성국;강신형
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1052-1063
    • /
    • 1998
  • The performance database of small-sized centrifugal compressors is needed for the design of high performance machines and also for the verification of design tools and analysis software. An impeller is designed, manufactured and tested. The effects of several parameters on the evaluation of performance are investigated and the performance test of parallel diffuser is also carried out. The proper estimation of static pressure, total temperature and blockage at the impeller exit is important for performance evaluation. 4 method in cooperation with 3-D calculation is suggested. The measured performances are in a good agreement with the predicted results. However, there are some discrepancies in efficiency.