• 제목/요약/키워드: High Temperature Reaction

검색결과 2,370건 처리시간 0.033초

양생온도 변화가 고성능 콘크리트의 압축강도에 미치는 영향에 관한 연구 (A Study on the Effects of Curing Temperature for Compressive Strength of High Performance Concrete)

  • 노인철
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.163-168
    • /
    • 2002
  • The object of this study is to define the characteristics of high performance concrete with varing compressive strength of concrete and curing temperature. The major test variables are 1) high strength concrete(500kg/$cm^2$) and ordinary strength concrete(240kg/$cm^2$) compressive strength, 2) curing temperature and condition, 3) concrete curing age, 4) three types of cement. From the test results were shown that curing temperature and curing conditions were also very effective for high strength concrete and ordinary strength concrete, and concrete were largely effected by cement type and temperature during the hydration reaction process. This paper describes the effect of curing temperature for strength and characteristics of high performance concrete.

Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery

  • Yang, Ji-Hyun;Shin, Hee-Yong;Ryu, Young-Jin;Lee, Choul-Gyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.267-273
    • /
    • 2018
  • Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and $350^{\circ}C$) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium ($NH_4{^+}$), phosphate ($PO_4{^{3-}}$), nitrate ($NO_3{^-}$) and nitrite ($NO_2{^-}$) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at $350^{\circ}C$ and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at $350^{\circ}C$ and 5 min. Our results indicate that the reaction condition of $350^{\circ}C$ for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

오존산화에 의한 염색체수의 색도 제거에 관한 연구 (A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation)

  • 정순형;최준호
    • 환경위생공학
    • /
    • 제18권4호
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

마이크로파를 이용한 SHS 방법에 의한 분말의 산화-환원반응 (Microwave Induced Reduction/Oxidation Reaction by SHS Technique)

  • 김석범
    • 한국결정학회지
    • /
    • 제9권1호
    • /
    • pp.44-47
    • /
    • 1998
  • 가정용 2.45GHz 마이크로파 오븐을 사용하여 A1 금속분말과 SiO2 분말간에 SHS방법에 의하여 산화/환원 반응을 통한 Al2O3 분말과 Si분말간의 복합체를 얻을 수 있었다. 분말간의 반응을 일으키기 위한 온도까지 승온시키기 위하여는 SiC 분말을 susceptor로 이용한 마이크로파 복합가열(Microwave Hybrid Heating)방법을 사용하여 분당 100℃의 승온 속도로 가열하였으며 반응은 850℃ 근처에서 일어났으며 가열 속도는 반응이 시작되면서 분당 200℃ 이상의 온도상승이 일어나면서 원하는 반응을 얻을 수 있었다.

  • PDF

벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성 (Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization)

  • 한인수;이정석;이근원
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2013
  • 본 연구에서는 벌크 중합법을 이용한 폴리스티렌 중합공정의 폭주반응에 대한 열적 위험성을 가속속도열량계(ARC)와 소규모 반응열량계(MM)를 이용하여 평가하였다. 당해 중합공정은 반응온도 $120^{\circ}C{\sim}130^{\circ}C$로 운전되어져야 하며, $130^{\circ}C$ 이상의 반응온도에서는 반응 생성물의 급격한 점도 증가로 인하여 반응기의 온도제어 실패에 따른 폭주반응의 위험성이 존재하였다. 또한 당해 중합공정의 반응온도($120^{\circ}C{\sim}130^{\circ}C$)에서 공정운전 초기에 반응기의 냉각실패가 발생할 경우 폭주반응으로 인해 반응기의 온도와 압력이 각각 30 ~ 50분 이내에 약 $340^{\circ}C$, 5.3 bar 까지 급격히 상승하여 반응기의 파열판이 파열되거나 반응기가 폭발할 수 있는 열적 위험성이 높게 나타났다.

Reaction Dynamics of CH3 + HBr → CH4 + Br at 150-1000 K

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2473-2479
    • /
    • 2013
  • The kinetics of the radical-polar molecule reaction $CH_3+HBr{\rightarrow}CH_4+Br$ has been studied at temperatures between 150 and 1000 K using classical dynamics procedures. Potential energy surfaces constructed using analytical forms of inter- and intramolecular interaction energies show a shallow well and barrier in the entrance channel, which affect the collision dynamics at low temperatures. Different collision models are used to distinguish the reaction occurring at low- and high-temperature regions. The reaction proceeds rapidly via a complex-mode mechanism below room temperature showing strong negative temperature dependence, where the effects of molecular attraction, H-atom tunneling and recrossing of collision complexes are found to be important. The temperature dependence of the rate constant between 400 and 1000 K is positive, the values increasing in accordance with the increase of the mean speed of collision. The rate constant varies from $7.6{\times}10^{-12}$ at 150 K to $3.7{\times}10^{-12}$ at 1000 K via a minimum value of $2.5{\times}10^{-12}\;cm^3\;molecule^{-1}\;s^{-1}$ at 400 K.

고온 유동 반응기를 이용한 CF4 분해 반응기구에 대한 선행 연구 (A Preliminary Study on CF4 Decomposition Reaction Mechanism Using High Temperature Flow Reactor)

  • 김영재;이대근;김승곤;노동순;고창복;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.157-159
    • /
    • 2015
  • In this study, $CF_4$ decomposition was experimentally investigated in a high temperature flow reactor. Effects of temperature, reactant composition and concentration, and residence time on its decomposition into other stable species were analyzed. Then the results were compared to numerical results obtained using Chemkin Plug Flow Reactor model with Princeton Chemistry. As a preliminary result higher decomposition rate is obtained for higher reactor temperature and long residence time when proper reactants are supplied.

  • PDF

Optimization of Binder Burnout for Reaction Bonded Si3N4 Substrate Fabrication by Tape Casting Method

  • Park, Ji Sook;Lee, Hwa Jun;Ryu, Sung Soo;Lee, Sung Min;Hwang, Hae Jin;Han, Yoon Soo
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.435-440
    • /
    • 2015
  • It is a challenge from an industrial point of view to fabricate silicon nitride substrates with high thermal conductivity and good mechanical properties for power devices from high-purity Si scrap powder by means of thick film processes such as tape casting. We characterize the residual carbon and oxygen content after the binder burnout followed by nitridation as a function of the temperature in the temperature range of $300^{\circ}C-700^{\circ}C$ and the atmosphere in a green tape sample which consists of high-purity Si powder and polymer binders such as polyvinyl butyral and dioctyl phthalate. The optimum condition of binder burnout is suggested in terms of the binder removal temperature and atmosphere. If considering nitridation, the burnout of the organic binder in air compared to that in a nitrogen atmosphere could offer an advantage when fabricating reaction-bonded $Si_3N_4$ substrates for power devices to enable low carbon and oxygen contents in green tape samples.

DME HCCI 운전조건에서 Methanol 분율에 따른 HCCI엔진연소 특성에 관한 수치해석적 연구 (A Computational Study on DME HCCI Combustions Characteristics with Methanol Concentrations)

  • 이효원;임옥택;박규열;조원준;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.79-86
    • /
    • 2014
  • In Dimethyl Ether (DME) indirect production processes, DME have a reforming process to separate Methanol. DME has a high cetane number and Methanol has a high octane number. Each fuel has a different combustion characteristics and reactivity. So, this paper was investigated on the combustion characterisitics of DME and Methanol. Basically, Methanol has a effect of retarding ignition. However, Within 10% of total carbon mole number in DME, Methanol slightly changed the onset timing of Low Temperature Reaction (LTR) with increasing thermal-ignition preparation range. It means that controlling combustion phasing of DME can be possible without eliminated LTR. In case of IMEP, the ranges.