• Title/Summary/Keyword: High Temperature Hardness

Search Result 984, Processing Time 0.022 seconds

Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys (구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정)

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings (치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline in Power Plant by Using Ultrasonic Velocity Measurement and Hardness Test (초음파 음속 및 경도법에 의한 발전소 고온배관재의 크리프 손상평가)

  • Hur, Kwang-Beom;Yoo, Keun-Bong;Cho, Yong-Sang;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.92-99
    • /
    • 1999
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in load bearing structures of pressurized components operationg at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damgage have been used. So far, the replica method is mainly used for the inspection of high temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or intergranular microcracks were carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation was analyzed. As a result of ultrasonic tests for crept for specimens, we founded that the sound velocity was decreased as increase of creep life fraction(${phi}c$) and also, confirmed that hardness was decreased as increase of creep life fraction(${phi}c$).

  • PDF

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose (構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究)

  • 옹장우;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

Effects of Low and Alternated Temperature Treatments on Quality of Oak Mushroom in Sawdust Culture (표고 톱밥 재배에서 저온 및 변온 처리가 표고 품질에 미치는 영향)

  • Park, Kyoung-Sub;Son, Jung-Eek;Yoon, Gap-Hee
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.43-44
    • /
    • 2001
  • Recently the sawdust culture of Lentinus edodes(Berk.) has been gradually extended replacing the log cultivation in Korea. It is indeed able to reduce the use of log and cultivation period in controlled facilities, but is not yet able to produce the high-quality mushroom. The objectives of this study were to examine the effects of low and alternated temperature treatments during the fruiting period on the quality of oak mushroom. At low temperature treatments of 1$^{\circ}C$ and 10$^{\circ}C$, the crack, lightness, hardness, and other characteristics for the high-quality oak mushroom were not improved. However, the crack, brightness, and hardness of cap were increased at alternated temperatures of 5-10$^{\circ}C$ than the other temperature treatments. In conclusion, the alternated temperature treatments were more effective than the low temperature treatment for improving the indices of high-quality oak mushroom such as the crack, brightness and hardness of cap.

  • PDF

A Study on the Changes of Pork Quality by Freezing and Thawing Methods (돈육의 냉해동 조건에 따른 품질 변화에 관한 연구)

  • Kang, Byung-Sun;Kim, Dong-Ho;Lee, Oh-Seuk
    • Culinary science and hospitality research
    • /
    • v.14 no.2
    • /
    • pp.286-292
    • /
    • 2008
  • The purpose of this study was to examine the effects of freezing and thawing methods on the quality of pork meat. The freezing methods for pork meat were the cryogenic freezing with liquid nitrogen gas, fast freezing at $-70^{\circ}C$ and normal freezing at $-20^{\circ}C$. The thawing methods were tested on low temperature thawing at refrigerative temperature($4^{\circ}C$), room temperature($20^{\circ}C$), high temperature($60^{\circ}C$) and using microwave. The quality of pork meat frozen by cryogenic methods was better than those of fast and normal freezing methods. The cooking hardness of pork meat frozen by cryogenic method showed the highest value as 1,898 g. In case of fast freezing, the hardness of pork meat was 1,472 g and that of normal frozen pork meat was 1,541 g. The high cooking hardness value of cryogenic frozen pork meat showed that the cryogenic freezing method made less freeze damage like textural softness. The drip-loss of pork meat thawed at refrigerative temperature($4^{\circ}C$), room temperature($20^{\circ}C$), high temperature($60^{\circ}C$) were shown lower than that of microwave thawing. The cooking hardness of pork meat that was thawed by microwave showed the lowest value among the thawing methods. The cryogenic freezing was the most useful freezing method for preserving quality, decreasing the freeze damage of pork meat. And thawing at refrigerative temperature was the most effective method to prevent quality loss and weight loss by drip-loss.

  • PDF

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

A study on the change of physical properties of elastomer in high temperature curing (고온가황에 의한 탄성체의 물성변화에 관한 연구)

  • Lee, Jeung-Ho
    • Elastomers and Composites
    • /
    • v.19 no.3
    • /
    • pp.163-177
    • /
    • 1984
  • The effect of curing temperature increase and sulfur amount added were studied with natural and synthetic rubbers. Also, the effects of TMTD, MBTS and mixture of zinc soaps of high molecular fatty acids added to natural rubber were investigated respectively. The experimental results showed that, in the case of the conventional curing ($145^{\circ}C$), natural rubber, compared with synthetic rubber, gave higher values in elongation, tensile strength, cure rate, and lower values in modulus change. But, at high temperature curing ($180^{\circ}C$), natural rubber showed faster reversion rate, and higher heat build-up compared to synthetic rubber, than in the conventional curing. Also, natural rubber produced at high temperature showed severe degradation in hardness and tensile strength before heat-aging as well as in hardness, modulus and tensile strength after heat-aging. Improved reversion effect was obtained with natural rubber either by blending mixture of zinc soaps of high molecular acids or by applying semi-efficient vulcanization system.

  • PDF