• 제목/요약/키워드: High Temperature Gas Reactor

검색결과 351건 처리시간 0.024초

헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링(II) (High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II))

  • 송기남;이형연;김찬수;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1455-1462
    • /
    • 2010
  • 초고온가스로에서 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하기 위한 시스템이 원자력수소생산시스템이며, 이 시스템에서 공정열교환기는 초고온 열과 황-요오드 공정을 통해 수소를 생산하는 핵심 기기이다. 한국원자력연구원에서는 초고온가스로에 사용될 기기에 대한 성능시험을 위해 헬륨가스루프를 구축하고 공정열교환기 시제품을 제작하였다. 본 연구는 공정열교환기 시제품을 헬륨가스루프에서 시험하기 전에 미리 공정열교환기 시제품의 고온 구조건전성을 평가하기 위한 작업의 일환으로 공정열교환기 시제품에 대한 고온구조해석 모델링, 열해석 및 열팽창해석 결과들을 정리한 것이다. 해석 결과는 공정열교환기 시제품 성능시험 장치 설계에 반영할 것이다.

중형 공정열교환기 시제품 고온구조해석 (High-Temperature Structural Analysis of a Medium-Scale Process Heat Exchanger Prototype)

  • 송기남;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1283-1288
    • /
    • 2012
  • 수소를 대량으로 생산하기 위한 원자력수소생산시스템에서 공정열교환기는 초고온가스로로부터 생성된 초고온 열을 화학반응공정으로 전달하는 핵심기기이다. 한국원자력연구원에 구축되어 있는 소형 가스루프에서 $Hastelloy^{(R)}$-X 로 제작된 중형 공정열교환기 시제품에 대한 성능시험이 계획되어 있다. 본 연구에서는 중형 공정열교환기의 고온구조건전성을 파악하기 위한 선행 연구로서 소형가스루프 시험조건하에서 중형 공정열교환기 시제품의 고온구조해석을 이전 연구에서 확립된 경계조건을 적용하여 수행하였다. 해석결과는 소형가스루프에서의 중형 공정열교환기 시제품에 대한 성능시험 결과와 비교할 예정이다.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구 (Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction)

  • 김세훈;박노국;이태진
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

동력로용 보상형 전리함의 제작 및 실험 (Manufacture and Experiment of Compensated Ionization Chamber for the Nuclear Power Reactor)

  • 육종철;고병준;박용집
    • 전기의세계
    • /
    • 제19권4호
    • /
    • pp.18-23
    • /
    • 1970
  • A neutron detector, in general, can not be utilized as the thermal neutron detecting chamber in the nuclear power reactor, especially P.W.R. due to the characteristics of high temperature, high pressure and high neutron flux in a reactor vessel. We have performed an experiment to detect the thermal neutrons at 400.deg. C and high flux of thermal neutron in a power reactor. Coating boron-10 on the aluminium plates by means of surface diffusion method at 600.deg. C for 5 hours in an electric furace, also we made a typical chamber which was compensated ionization chamber filled with free air as an ionization gas. It was checked the chamber characteristics in the TRIGA MARK-II Reactor at the power level from zero to 250KW. The chamber current showed a perfect linear increase to power increase. However, many variation of the measured current were observed within the power of 50KW.

  • PDF

관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응 (Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor)

  • 공경택;김홍곤
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.

Ti-Si-Al형 세라믹 촉매 방전관의 오존 발생 특성 연구 (A Study of Ozone Generation Characteristic using Ceramic Catalyst Tube of Ti-Si-Al)

  • 조국희;김영배;이동훈
    • 조명전기설비학회논문지
    • /
    • 제16권6호
    • /
    • pp.130-136
    • /
    • 2002
  • 본 논문은 비유전율이 100 이상으로 제작된 Ti-Si-Al형 세라믹 촉매 방전관에 전원 전압 4 ~6[kV], 구동 주파수0.6~1.0[kHz]를 방전관 전극에 인가하여 오존 농도와 수율을 측정한 것이다. 측정 결과 구동 주파수 600[Hz], 유량 2[1/min], 동작 압력 1.6[atm], 방전관 주위 온도 20[$^{\circ}C$]에서 산소 원료의 경우, 오존 발생 농도는 50~60[g/㎥]이었고, 오존 발생 수율은 180(g/kWh)로 나타났다. 그리고 반응기 내부 온도 또는 유입 가스 온도가 낮을수록 오존 수율은 상승하였다.

메탄의 무촉매 부분산화를 통한 합성가스 제조 연구 (A Study on Syngas Production By Noncatalytic Partial Oxidation of Methane)

  • 나익환;양동진;채태영;;방병열;양원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2009
  • Noncatalytic partial oxidation of methane for producing synthesis gas was studied in a lab-scale experimental apparatus. Partial oxidation developed for high-temperature, fuel-rich combustion and it is exothermic process. but Steam reforming and Caron reforming is highly endothermic process to need much energy. Noncatalytic partial oxidation of methane is affected by temperature and equivalent ratio, so we studied effect about composition of synthesis gas at lab scale reactor. We used electronic heater to control the temperature of reactor. The quality of synthesis gas is improved and reduced heat value to require at Noncatalytic partial oxidation because the reacting temperature is lower at oxy condition.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.