• Title/Summary/Keyword: High Temperature Flow Stress

Search Result 220, Processing Time 0.025 seconds

Cracking Near a Hole on a Heat- Resistant Alloy Subjected to Thermo-Mechanical Cycling (열 및 기계적 반복하중 하의 내열금속 표면 홀 주변 산화막의 변형 및 응력해석)

  • Li, Feng-Xun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1227-1233
    • /
    • 2010
  • In the hot section of a gas turbine, the turbine blades were protected from high temperature by providing a thermal barrier coating (TBC) as well as by cooling air flowing through internal passages within the blades. The cooling air then passed through discrete holes on the blade surface, creating a film of cooling air that further protects the surface from the hot mainstream flow. The holes are subjected to stresses resulting from the lateral growth of thermally grown oxide, the thermal expansion misfit between the constituent layers, and the centrifugal force due to high-speed revolution; these stresses often result in cracking. In this study, the deformation and cracks occurring near a hole on a heat-resistant alloy subjected to thermo-mechanical cycling were investigated. The experiment showed that cracks formed around the hole depending on the applied stress level and the number of cycles. These results could be explained by our analytic solution.

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Shape Optimization of Ball Valve for High Temperature (고온용 볼 밸브의 형상 최적화)

  • Kim, Nam-Hee;Byeon, Ji-Hoon;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The main purpose of the ball valve ball is to be moved by the rotation of the stem when fully open or completely closed. In this study the heat of the initial model, which used a structure interaction analysis technique, tried to examine the structural safety of the high temperature for the ball valve. In the initial model the stress of the exiting sheet was more than the yield strength. We selected two design shapes with variables of length and thickness for the optimization of the sheet. The Kriging interpolation method was applied to a meta-model-based optimization technique. As a result, it was possible to find a thickness and length for the sheet within the yield strength. This was done by measuring the value of the capacity coefficient of the valve and evaluating the performance of the ball valve.

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

Hydroformability and mechanical properties of A16061 tubes on different extrusion type (알루미늄 6061 압출재의 제조공정에 따른 온간액압성형성과 기계적 특성 연구)

  • Yi, H.K.;Jang, J.H.;Kwon, S.O.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.254-257
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al 6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $200^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $200^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

The Effects of PV Cell's Electrical Characteristics for PV Module Application (태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hog;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

The Sliding Wear Behavior of Inconel 600 Mated with SUS 304 (SUS 304에 대한 Inconel 600의 Sliding 마모거동)

  • Kim, Hun;Choi, Jong-Hyun;Kim, Jun-Ki;Park, Ki-Sung;Kim, Seung-Tae;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.841-845
    • /
    • 2001
  • The steam generator tubes of power plant damaged by sliding wear due to flow-induced motion of foreign object. Amount of wear have been predicted by Achard's wear equation until now. However, there are large error and low reliability, because this equation regards wear coefficient(k) as constant. The sliding wears tests have been performed at room temperature to examine parameters of wear (wear distance, contact stress). The steam generator tube material for wear test is used Inconel 600 and foreign object material is used 304 austenite stainless steel. The sliding wear tests show that the amount of wear is not linearly proportional to the wear distance(for 374 austenite stainless steel). According to experimental result, wear coefficient is not constant k but function k(s) of wear distance. The newly modified wear predictive equation V=k(s)F have small error and high reliability.

  • PDF

A Study on the Characteristics of Aluminum Tube Hydroformed Products (알루미늄 튜브를 이용한 액압성형품 특성연구)

  • Yi, Hyae-Kyung;Lee, Gun-Yeop;Lee, Sung-Mun;Lee, Young-Seon;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1010-1015
    • /
    • 2008
  • In this study, the characteristics of aluminum tube hydroformed products at different extrusion type and heat treatment conditions were investigated. For the investigation, as-extruded, full annealed and T6-treated Al 6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, free bulge test was performed at room temperature to $300^{\circ}C$. Also mechanical properties of hydroformed products at various pre- and post-heat treatments were estimated by hexagonal prototype hydroforming test at $250^{\circ}C$. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube. As a results, hydroformability of full annealed tube is $5{\sim}8%$ higher than that of extruded and T6-treated tube. The tensile strength and elongation of T6-post heat treated indirect extrusion tube were more than 330MPa and 12%, respectively. However, T6 pre treated hydroformed product represents high strength, 330MPa and low elongation, 8%. Therefore, Hydroformability of Al6061 tube showed similar value for both extrusion types. However flow stress of direct tube showed $20{\sim}50MPa$ lower value than indirect tube.

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

  • Lim, Sang-Sub;Mun, Jae-Chul;Kim, Tae-Won;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.922-934
    • /
    • 2014
  • In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.