• Title/Summary/Keyword: High Temperature Corrosion

Search Result 728, Processing Time 0.03 seconds

Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

  • Kim, Ji Hyun;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 were investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application.

A Study on Heat Resistance of High Temperature Resistant Coating

  • Zhang, Liping;Wang, Xueying;Zhang, Qibin;Qin, Yanlong;Lin, Zhu
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.60-63
    • /
    • 2005
  • A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes, the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper.

The Importance of Corrosion Control and Protection Technology in the Refinery

  • Kim, Byong Mu;Oh, Sung Lyong
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2007
  • This paper presents the importance of corrosion control and protection technology with a real case study of heater tube rupture damaged by High temperature H2S-H2 corrosion in the refinery. The heater was operated at the Hydrocracking unit and the operation temperature and pressure was $340^{\circ}C$ and $18kg/cm^{3}$ respectively. Top side of the convection tube was thinned by high temperature hydrogen sulfide and hydrogen gas as a uniform corrosion and finally ruptured under operation pressure. Damaged area (Convection tube zone) was blocked by protection wall, so it was impossible to inspect with conventional nondestructive examination. Instead the elbow area which is out of the protection wall was inspected regularly to evaluate the corrosion rate of convection tube indirectly. However the operation temperature and the phase of the process stream was different between inside the chamber and outside the chamber. As a result, it caused severe corrosion to the horizontal convection tube inside the chamber comparing to the elbow outside the chamber. Finally convection tube was corroded more rapidly than the elbow and ruptured after 13 years operation. Because of the rupture, the heater was totally burned and the operation was stopped for 3 months until it has been reconstructed. To prevent this kind of corrosion problem and accident, corrosion control should be strengthened and protection technology should be improved.

Analysis of High-Temperature Corrosion of Heat Exchanger Tubes in Biomass Circulating Fluidized Bed Boiler (바이오매스 순환유동층 보일러의 열교환기 고온 부식 특성)

  • Yujin Choi;Dal-hee Bae;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • This paper presents the research results of analyzing the high-temperature corrosion characteristics of three currently commercialized heat exchanger tube materials under actual operating conditions of a biomass power plant. In order to precisely analyze the high-temperature corrosion characteristics of these materials, a high-temperature corrosion evaluation device was installed in the power plant equipment, which allows for adjusting the surface temperature of the heat exchanger tubes. Experiments were conducted for approximately 300 hours under various temperature and operating conditions. In this study, the commercialized heat exchanger tube materials used were SA213T12, SA213T22, and SA213T91 alloys. In order to objectively analyze the high-temperature corrosion characteristics of each material, an international standard-based process to remove corrosion products was applied to obtain the weight change of the specimens, and the average thickness loss and corrosion rate were derived. Thus, the high-temperature corrosion results for each condition were quantitatively compared and analyzed. In addition, in order to increase the reliability of the high-temperature corrosion evaluation method introduced in this study, the surface and cross-sectional corrosion of the specimens were confirmed by using scanning electron microscopy and energy-dispersive X-ray analysis. Based on these analysis results, it was found that the corrosion resistance of the commercial heat exchanger materials increases as the content of chrome and nickel in the composition increases. Additionally, it was found that the corrosion phenomenon is rapidly accelerated as the surface temperature increases. Finally, the replacement period (lifetime) of the heat exchanger tubes under each condition could be inferred through this study.

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

Evaluation of Wear Performance of Corroded Materials in an 800℃ Molten Salt Environment (800℃ 용융염 환경에서 부식된 재료의 마모 성능 평가)

  • Yong Seok Choi;Kyeongryeol Park;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Ji Ha Lee;Tae Woong Ha;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.97-102
    • /
    • 2024
  • The next-generation Molten Salt Reactor is known for its high safety because it uses nuclear fuel dissolved in high-temperature molten salt, unlike traditional solid atomic fuel methods. However, the high-temperature molten salt causes severe corrosion in internal structural materials, threatening the reactor's safety. Therefore, it is crucial to investigate the high-temperature corrosion resistance and wear performance of materials used in reactors to ensure safety. In this study, the high-temperature corrosion resistances and wear performances of corrosion samples in a NaCl-MgCl2-KCl (20-40-40 [wt%]) molten salt are investigated to evaluate the applicability of economically viable stainless steels, 316SS and 304SS. Hastelloy C276 and a new alloy containing a small amount of Nb are used as reference samples for comparative analysis. The mass loss, mass loss rate per unit volume, and surface roughness of each sample are measured to understand the corrosion mechanisms. Scanning electron microscopy and energy-dispersive spectroscopy analyses are employed to analyze the corrosion mechanisms. Wear tests on the corroded samples are also conducted to assess the extent of corrosion. Based on the experimental results, we predict the lifespans of the materials and evaluate their suitability as candidate materials for molten salt reactors. The data obtained from the experiments provide a valuable database for structural materials that can enhance the stability of molten salt reactors and recommend high-temperature corrosion-resistant materials suitable for next-generation reactors.

Effect of Mo, Ti, Nb on the hot salt corrosion behavior of ferritic stainless steels for automotive exhaust system (자동차배기관용 페라이트계 스테인레스강의 고온염부식에 미치는 Mo, Ti, Nb 원소의 영향)

  • 김수정;안용식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.48-55
    • /
    • 1997
  • The steel for automotive exhaust system needs a good corrosion resistance at the atmosphere of high temperature NaCl. Effect of the alloying elements Me, Ti, Nb on the NaCl induced hot corrosion behavior was investigated at the temperatures between 55$0^{\circ}C$ and 75$0^{\circ}C$ for 18Cr ferritic stainless steels. The weight loss by corrosion has increased linearly with corrosion cycle time, and the corrosion rate has accelerated at higher temperature. The alloying of Mo significantly improved corrosion resistance of the steel and the effect was more pronounced at higher temperature. The addition of alloying elements Ti, Nb have also shown improved corrosion resistance by formation of Ti(C,N) or Nb(C, N) precipitates.

  • PDF

Enhanced Classical Tafel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non-Linear Effect of Temperature

  • Hussain, Raja Rizwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.71-75
    • /
    • 2010
  • The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non-linear effect of temperature on corrosion of rebar embedded in concrete.

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng;Hu, Yousen;Li, Jinggang;Jin, Desheng;Meng, Shuqi;Ruan, Tianming;Hu, Yisong;Zhang, Ziyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.984-990
    • /
    • 2022
  • Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.