• Title/Summary/Keyword: High Speed Trains

Search Result 533, Processing Time 0.032 seconds

Aerodynamic Noise Characteristics of High-speed Trains by the Beamforming Method (빔형성 기법을 이용한 고속철도차량의 공력소음특성 도출 연구)

  • Noh, Hee-Min;Choi, Sung-Hoon;Koh, Hyo-In;Hong, Suk-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • In this paper, aerodynamic noise characteristics of high-speed trains were deduced from the beamforming method. First, pass-by noise of high-speed trains was measured by a microphone array system. This measurement suggested that the majority of the aerodynamic noise produced came from the bogie area, the pantograph and its cover, and inter-coach gaps. Then, beampower outputs of a position in high-speed trains were obtained from the beamforming method. By Fourier transform, sound characteristics of the position in the frequency domain were deduced from the beamforming power spectrum. From this study, aerodynamic noise characteristics from the major sources of high-speed trains were drawn.

Degraded Modes and Vigilance System Analysis of High-speed Trains Driving Activities (고속철 운전 활동 저하모드 및 경계시스템 분석)

  • Noh, Hee-Min;Hong, Sun-Ho;Cho, Yon-Ok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.2035-2039
    • /
    • 2008
  • In this paper, degrades modes of high-speed trains are deduced and analyzed by using Systems engineering architecture methods for a preceding research of hazard identification and scenarios deduction of the KTX. Moreover, Vigilance System of the high-speed trains is analyzed.

  • PDF

High-speed Trains Driving Functions Analysis Using Systems Engineering

  • Noh, Hee-Min
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.90-94
    • /
    • 2010
  • In this paper, driving functions of the Korea High-speed Trains were decomposed based on systems engineering architecture. In order to analyze the driving function, various systems engineering tools and methods were used. Moreover, interfaces of decomposed driving functions were analyzed to figure out purposes of the driving functions. Through activity modeling of driving function of the Korea High-Speed Trains, main functions were derived when starting, speeding and stopping. When the high speed train is speeding, pre-departure checks and wheel slide prevention are essential driving activities for the safety and when the high speed train runs high speed, maintaining driving stability by monitoring bogie hunting and monitoring drivers' safe operation by vigilance systems is important. Furthermore, when the train is braking, the driver should checks brake and suspensions as safety actions.

  • PDF

Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line (고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석)

  • 김석원;박찬경;김기환;박태원;김영국
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.

The development of WTB(Wire Train Bus) Analyzer for the TCN(Train Communication Network) testing (TCN(Train Communication Network) 통신 시험용 WTB(Wire Train Bus) Analyzer 개발)

  • Jeon, Seong-Joon;Paik, Jin-Sung;Shon, Kang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1936-1945
    • /
    • 2008
  • In Korea, TCN has applied to the Korean High-speed Train (HSR350X) through G7 High-speed Train development project. TCN is the most suitable international standard communication network for distributed control systems that is adopted for high-speed of vehicle, safety and flexibility. TCN is the network exclusively for the high-speed train and electrical trains. This TCN satisfies the network standards. The network standards are real time communication, fault tolerance design, integrated data system, resistance of environment, automated recognition for modification of vehicle formation and maintenance. The purpose of this research is applying the development of WTB analyzer which is part of communication network system TCN, to check the communication of high-speed trains and electrical trains.

  • PDF

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF

A Relay-assisted Secure Handover Mechanism for High-speed Trains

  • Zhao, Yue;Tian, Bo;Chen, Zhouguo;Yang, Jin;Li, Saifei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.582-596
    • /
    • 2019
  • Considering that the existing Long Term Evolution is not suitable for the fast and frequent handovers of high-speed trains, this paper proposes a relay-assisted handover mechanism to solve the problems of long handover authentication time and vulnerable to security attacks. It can achieve mutual authentication for train-ground wireless communication, and data transmission is consistent with one-time pad at the same time. The security analysis, efficiency analysis and simulation results show that the proposed mechanism not only realizes the forward security and resists many common attacks, but also effectively reduces the computational overhead of train antenna during the secure handover process. When the running speed of a train is lower than 500km/h, the handover delay is generally lower than 50ms and the handover outage probability is less than 1.8%. When the running speed of a train is 350km/h, the throughput is higher than 16.4mbps in the process of handover. Therefore, the secure handover mechanism can improve the handover performance of high-speed trains.

An Accurate Velocity Estimation using Low Resolution Tachometer of High-Speed Trains (고속열차의 저해상도 타코미터를 이용한 정확한 속도 추정에 관한 연구)

  • Lee, Jae-Ho;Kim, Seong Jin;Park, Sungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.131-136
    • /
    • 2018
  • Reliable velocity estimation technology for trains is one of technologies used to operate trains safely and effectively. Various sensors such as tachometers, doppler radars, and global positioning systems are used to estimate velocity of a train. Tachometer is widely used to estimate velocity of a trains due to its simplicity, small volume, cost-effectiveness, continuously measurement at high speed, and robustness against noise. Accuracy in the velocity calculation using a tachometer depends on quantization error, measurement error of wheel radius or diameter, and tachometer's imperfection from manufacturing or installation process. In this paper, we present an accurate velocity estimation method using a low-resolution tachometer, which is commonly installed on a high-speed train. Baseline estimation method is proposed to accurately calculate the velocity of the high-speed train from tachometer's pulses. HEMU-430x test train is used for the experiment and verification of the proposed method. Experimental results with several routes show that the proposed method is more accurate than a conventional method.

The Comparative Analysis of Slipstream Phenomena by High-Speed and Traditional Train (고속(KTX) 및 기존 철도차량의 열차풍 현상 비교 분석)

  • Kim, Dong-Hyeon;Jang, Yong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.173-180
    • /
    • 2007
  • A series of field tests were performed to develop aerodynamic characteristic evaluation method and countermeasure technology in conventional and high-speed railway. The strength of rolling stock-induced wind which affect the people and substructure in platform and nearby track were investigated. The slipstream of passing trains was measured by hot-wire array system. The speed of trains was 110 - 125km/h for conventional ones and 300km/h for high-speed ones. The streamlined shape trains cause about 50% smaller-scale slipstream compared to the non-streamlined ones.

Dynamic effect of high-speed trains on simple bridge structures

  • Adam, Christoph;Salcher, Patrick
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.581-599
    • /
    • 2014
  • In this paper the overall dynamic response of simple railway bridges subjected to high-speed trains is investigated numerically based on the mechanical models of simply supported single-span and continuous two-span Bernoulli-Euler beams. Each axle of the train, which is composed of rail cars and passenger cars, is considered as moving concentrated load. Distance, magnitude, and maximum speed of the moving loads are adjusted to real high-speed trains and to load models according to Eurocode 1. Non-dimensional characteristic parameters of the train-bridge interaction system are identified. These parameters permit a spectral representation of the dynamic peak response. Response spectra assist the practicing engineers in evaluating the expected dynamic peak response in the design process of railway bridges without performing time-consuming time history analyses.