• Title/Summary/Keyword: High Speed Craft

Search Result 74, Processing Time 0.022 seconds

A Study on Technical features and characteristics for Ship Security Alert Systems (선박보안경보장치(Ship Security Alert System)의 기능 및 기술적 특성 연구)

  • 장동원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.85-90
    • /
    • 2004
  • In this paper, we analysed the technical features and characteristics for Ship Security Alert Systems(SSAS). Due to the steady increase in incidents, and partly triggered by the events of 9/11, the International Maritime Organization (IMO) initiated an intense programme of activity, resulting in a conference on maritime security measures during December 2002. IMO SOLAS Regulation XI-2/6 applies to the following types of vessels on international voyages which include passenger ships, including high-speed passenger craft, cargo ships, including high-speed craft, of 500 gross tons and upwards and mobile offshore units. The paper has discussed on international technical trends and its characteristics and provided how to regulate for activating and harmonizing internationally domestic ships.

  • PDF

A Study on the Resistance Test Method for Planning Hull Model using the High Speed Towing Carriage (무인고속전차를 이용한 활주선 모형의 저항시험 기법 연구)

  • Lee, Young-Gill;Ha, Yoon-Jin;Jeong, Kwang-Leol;Chae, Soon-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • The resistance test of a high speed craft such as planing ship is performed with a high speed towing carriage instead of ordinary towing carriage because of the speed limitation. In the resistance test using high speed towing carriage, the model ship is fixed to the carriage to restrain the running attitude for enough measuring time. Such method is called fixed model test method. In the fixed model test method, to get the appropriate running attitude, the model test is iteratively repeated until the trim moment and lift force are close to zero. In this research, trim free model test method is investigated to reduce the number of iteration. And, the limitation of towing speed range in the trim free model test method is investigated.

A Study on Fabrication of Traditional Metal Craft Techniques Using 3D CAD (3D CAD를 이용한 전통금속공예기법 교보재 제작 연구)

  • Choi, San;Do, Eun-Ok;Huang, You-wei;Liang, You-Zhi;Park, Seung-Chul
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The Fourth Industrial Revolution has emerged, and technologies of various industries are being converged, compounded, or clouded computing, mobile, or big data. The emergence of a variety of skills and new jobs to match them is bringing the public out of the education and occupation of traditional metal crafts. In this change, craft education should find and study the education method suitable for the present times, and apply it to the educational field to raise public interest and revival. To this end, we will investigate the cases of education in other industries where new materials or technologies have been introduced, and use them in education of traditional metal craft techniques. In addition, we will investigate various cases and features of 3D printing technology and use it for education in craft techniques that have limited time, space and resources.

A study on the development of thin-walled metal bearing for the large-sized slow speed diesel engines. (대형저속 디젤엔진용 박판형 메탈 베어링의 국산화 개발에 관한 연구)

  • 김영주;조문제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 1995
  • Nowadays the thin-walled metal bearing, which is made seperately from the bearing housing and has the ratio of wall thickness/bearing diameter being less than 1/30, are used in many newly developed large-sized slow speed diesel engines for the purpose of upgarding lubication performance and easy maintenance according to the trends of increasing output per cylinder and lowering engine speed. The type of this bearing has been used generally in many small-sized high speed engines applied for automobile, high speed craft and industrial power generation systems since 1950s. But the tranditional thick-walled bearings, whice are linned white metal on the bearing housing directly, have been installed on the large and slow speed engines until 1990s due to the easy manufacturing procedures. In this study we have calculated optimum dimensions of the metal bearing, fabricated special zigs for crush measurement, model test machine, 2 sets of specimens.(crosshead pin bearing, $\phi$818*552*20mm) for B & W 6S70MC(20, 940*88rpm), and evaluated metal constact phenomena of white metal, its friction coefficient, temparature rise through the model test and field performance test.

  • PDF

A Basic study on the sea model test techniques for high speed Planing Boat (실 해상모형시험을 이용한 고속 활주정의 선형시험기법 기초연구)

  • Jang, Dong-Won;Park, Chung-Hwan;Jin, Song-Han
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.623-628
    • /
    • 2010
  • High speed marine vehicle, such as semi-planing, planing craft have been developed recently. These ships paid attention to the resistance characteristics, especially in high speed region. Model test method is divided to two equipment greatly, first 'Towing tank', second 'C.W.C.'. It is difficult to estimate a resistance characteristics for high speed boat. because these are made for low speed ship. This paper suggests a new model test method and system. This is real sea model test and it's comprised of eight part. Firstly, This method is tested at C.W.C that is possible to using in real sea model tes using low speed boat modelt. And then, Real sea model test and CFD calculation are performed and compared with tow way used high speed boat model. It can be a good way to estimate a performance for high speed boat.

Comparative Study of Design Loads for the Structural Design of Titanium Leisure Boat (티타늄합금 레저보트의 구조설계를 위한 설계하중 비교연구)

  • Yum, Jae-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.733-738
    • /
    • 2021
  • Recently, people's interest in marine leisure has been increasing, and research and development on leisure boats are actively being carried out to pioneer overseas markets. These days, the materials used for leisure boats are fiber-reinforced plastic (FRP) and aluminum alloy. However, FRP is hygroscopic and causes environmental problems, and aluminum alloy has high thermal conductivity and fire susceptibility. Therefore, titanium alloy is being adopted as a material for leisure boats instead. In this study, hull thicknesses and design pressures were calculated while considering dynamic effects for titanium boats. Four sets of rules and regulations were used: ISO 12215-5, RINA Pleasure Yacht, LR Special Service Craft, and KR High-speed Light Craft. The maximum bottom slamming loads were in the order of ISO, KR, LR, and RINA, and the required hull thicknesses were in the same order. This research might be helpful for understanding the rules, regulations, and overseas export of leisure boats.

A Numerical Study on Dynamic Instability Motion Control of Wave-Piercing High-Speed Planing Craft in Calm Water using Side Appendages

  • Kim, Sang-Won;Seo, Kwang-Cheol;Lee, Dong-Kun;Lee, Gyeong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.320-329
    • /
    • 2017
  • In this research, we have calculated characteristics of wave-piercing high-speed planing hull, by using a RANS solver and overset grid method, for comparing with experimental measurements of that and simulating with several appendages, since the computed results of commercial CFD code look reasonable for the prediction of the performances of planing hulls on calm water in planing conditions. As a result, it is confirmed that the dynamic instability phenomena in pitch and heave motions (porpoising) occurred after a certain $Fn_V$, and effectively suppressed using some of appendages, especially the 0.5L spray rail is suppressed to 24-55 % in the pitch motion and 33-55 % in the heave motion. In spray phenomenon, 1L hard chine suppress spray effectively and it is effective to set the angle of appendages to be less than $0^{\circ}$ in order to suppress wave.

Effective Application of Design Space Exploration in the Very Early Naval Ship Design (초기단계 함정설계시 설계영역탐색의 효과적 적용)

  • Park, Jinwon;Park, Sangil
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.61-73
    • /
    • 2015
  • The early-phase naval ship design demands requirements synthesis rather than design synthesis, which conducts engineering design for several domains on a detailed level. Requirements synthesis focuses on creating a balanced set of required operational capabilities satisfying user's needs and concept of operations. Requirements are evolved from capability based languages to function based language by statistical exploration and engineering design which are derived in the following order: concept alternative, concept baseline, initial baseline and functional baseline. The early-phase naval ship design process can be divided into three passes: concept definition, concept exploration and concept development. Main activities and outcomes in each pass are shortly presented. Concept definition is the first important step that produces a concept baseline through extensive design space exploration promptly. Design space exploration applies a statistical approach to explore design trends of existing ships and produce feasible design range corresponding to concept alternative. It further helps naval systems engineers and operational researchers by inducing useful responses to user and stakeholders' questions at a sufficient degree of confidence and success in the very early ship design. The focus of this paper is on the flow of design space exploration, and its application to a high-speed patrol craft. The views expressed in this paper are those of the authors, and do not reflect the official policy or rule of the Navy.

Performance Test of Pod-type Waterjet Propulsion System (Pod형 물분사 추진장치 성능시험 연구)

  • Kim, K.S.;Song, I.H.;Ahn, J.W.;Moon, I.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.21-30
    • /
    • 1997
  • This paper describes the experimental method of a pod-type waterjet propulsion system in a towing tank and shows the experimental analysis and test results of a designed waterjet propulsion system to be used for a hybrid high speed craft. The cruising performance of this craft is estimated from the results of the hull resistance test and waterjet test under the assumption that the interaction between the hull and the inlet pod is very small. A pod-type waterjet system with an axial pump was designed and a stand-alone waterjet experimental system was developed. Useful data such as the pump performance, the jet efficiency, the losses of inlet duct and nozzle were obtained. Test results show a good agreement with the design requirement.

  • PDF

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.