• Title/Summary/Keyword: High Resolution Radar

Search Result 326, Processing Time 0.029 seconds

Optimization Design of Non-Integer Decimation Filter for Compressing Satellite Synthetic Aperture Radar On-board Data (위성 탑재 영상레이다의 온보드 데이터 압축을 위한 비정수배 데시메이션 필터 최적화 설계 기법)

  • Kang, Tae-Woong;Lee, Hyon-Ik;Lee, Young-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.475-481
    • /
    • 2021
  • The on-board processor of satellite Synthetic Aperture Radar(SAR) digitizes the back-scattered echoes and transmits them to the ground. As satellite SAR image of various operating conditions including broadband and high resolution is required, an enormous amount of SAR data is generated. Decimation filter is used for data compression to improve the transmission efficiency of these data. Decimation filter is implemented with the FIR(Finite Impulse Response) filter and here, the decimation ratio and tap length are constrained by resource requirements of FPGA used for implementation. This paper suggests to use a non-integer ratio decimation filter in order to optimize the data transmission efficiency. Also, it proposes a filter design method that remarkably reduces the resource constraints of the FPGA in-use via applying a polyphase filter structure. The required resources for implementing the proposed filter is analysed in this paper.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

Design of High Gain array antenna for 70GHz band Short Range Radar Sensor (70GHz대역 근거리레이다 센서용 고이득 배열안테나의 설계)

  • Kim, Ju-suk;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.402-403
    • /
    • 2018
  • 70GHz-band high gain array antenna is developed for automotive short range radar sensor. In Short-rangeradar, the gain must be high in order to increase the resolution, and the angle width must be set to secure the field of view(Fov). The proposed antenna operates at 76~81GHz and satisfies angle width $60^{\circ}$, antenna gain 15dB and the input reflection coefficient of less than -10dB within the operating frequency. Wave guide WR-10 was used to measure the antenna and results similar to the simulation results were obtained.

  • PDF

Development of a Signal Acquisition Device to Verify the Applicability of Millimeter Wave Tracking Radar Transmission and Receiving Components (밀리미터파 추적레이더 송·수신 구성품의 적용성 검증을 위한 신호획득장치 개발)

  • Jinkyu Choi;Youngcheol Shin;Soonil Hong;Han-Chun Ryu;Hongrak Kim;Jihan Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.185-190
    • /
    • 2023
  • Recently, tracking radar requires the development of millimeter wave tracking radar to acquire target information with high resolution in various environments. The development of millimeter wave tracking radar requires the development of transmission and receiving components that can be applied to the millimeter wave tracking radar, as well as verification of the applicability of the tracking radar. In order to verify the applicability of the developed transmitting and receiving components, it is necessary to develop a signal acquisition device that can control the transmitting and receiving components using the operating concept of a tracking radar and check the status of the received signal. In this paper, we implemented a signal acquisition device that can confirm the applicability of components developed for millimeter wave tracking radar. The signal acquisition device was designed to process in real time the OOOMHz center frequency and OOMHz bandwidth signals input from 4 channels to verify the received signal. In addition, component control applying the tracking radar operation concept was designed to be controlled by communication such as RS422, RS232, and SPI and generation of control signals for the transmission and receiving time. Lastly, the implemented signal acquisition device was verified through a signal acquisition device performance test.

Estimating Three-Dimensional Scattering Centers of a Target Using the 3D MEMP Method in Radar Target Recognition (레이다 표적 인식에서 3D MEMP 기법을 이용한 표적의 3차원 산란점 예측)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.

Estimation of Quantitative Precipitation Rate Using an Optimal Weighting Method with RADAR Estimated Rainrate and AWS Rainrate (RADAR 추정 강수량과 AWS 강수량의 최적 결합 방법을 이용한 정량적 강수량 산출)

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.485-493
    • /
    • 2006
  • This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.

Terminal Guidance for Aerial Vehicles through Nadir-Looking Image Formation Using an Imaging Radar with a Rotating Antenna (회전하는 안테나를 가진 레이다를 이용하여 비행체 종말 유도를 위한 직하 방향 레이다 영상형성)

  • Lee, Hyukjung;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.328-331
    • /
    • 2019
  • A linear frequency modulated pulse train waveform can be cost-effective in achieving high range resolution, and thus the synthetic aperture radar may be benefited by using the mixer output of the received signal. However, the image formation process from a mixer output is vulnerable to errors caused by stop-and-go approximation. In this paper, a nadir-looking imaging radar based on time domain correlation is proposed. Furthermore, to prevent the occurrence of ghosting effect in images, antenna placement on a rotating disk is proposed. Simulation results indicate that ghosting effect can be eliminated by employing the proposed antenna placement structure.

Chirp Stitching Technique for Wideband Signals of the Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구레이더용 광대역 신호 획득을 위한 ? 스티칭 기술 연구)

  • 권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1777-1784
    • /
    • 2000
  • In this paper we suggested the chirp stitching algorithm and transmitter/receiver channel to a spaceborne high resolution SAR which enables wideband signal generation and processing with minimum hardware requirement. The transmitter channel generates two sub-band signals and then generate a wideband signal using chirp stitching algorithm and the receiver channel divides a wideband signal into two sub-band signals in order to overcome the high speed data handling capability of this spaceborne systems. We generated and processed a 100 MHz wideband signal evaluated the performance and verified the feasibility of the application of this chirp stitching algorithm and transmitter/receiver channel to spaceborne high resoultion SAR.

  • PDF

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005 (2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향)

  • Lee, GyuWon;Kwon, Byung-Huk
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.596-607
    • /
    • 2012
  • The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

Evaluation of High-Resolution QPE data for Urban Runoff Analysis (고해상도 QPE 자료의 도시유출해석 적용성 평가)

  • Choi, Sumin;Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.719-728
    • /
    • 2015
  • In this study, urban runoff analyses were performed using high resolution Quantitative Precipitation Estimation (QPE), and variation of rainfall and runoff were analyzed to evaluate QPE data for urban runoff analysis. The five drainage districts (Seocho3, 4, 5, Yeoksam and Nonhyun) around Gangnam station were chosen as study area, the area is $7.4km^2$. Rainfall data from KMA AWS (34 stations), SKP AWS (156 stations) and Gwanduk radar were used for QPEs in Seoul area. Four types of QPE(QPE1: KMA AWS, QPE2: KMA+ SKP AWS, QPE3: Gwangduk radar, QPE4: QPE2+QPE3) of 6 events in July 2013 were generated by using Krigging and conditional merging. The temporal and spatial resolution of QPEs are 10 minutes and 250 m, respectively. The complex pipe network were treated as 773 manholes, 772 sub-drainage districts and 1,059 pipelines for urban runoff analysis as input data. QPE2 and QPE4 show spatial variation of rainfall by sub-drainage districts as 1.9 times bigger than QPE1. The peak runoff of QPE2 and QPE4 also show spatial variation as 6 times bigger than Gangnam and Seocho AWS. Thus, the spatial variation of rainfall and runoff could exist in small area such as this study area, and using high-resolution rainfall data is desirable for accurate urban runoff analysis.