• 제목/요약/키워드: High Prandtl number

검색결과 25건 처리시간 0.022초

내부 원형 실린더의 크기가 정육면체 밀폐계 내부의 3 차원 자연대류 현상에 미치는 영향 (Effect of Inner Circular Cylinder Size on Three-Dimensional Natural Convection in Cubical Enclosure)

  • 서영민;최창영;하만영;박상후
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.975-982
    • /
    • 2014
  • 본 연구는 정육면체 밀폐계 내부에 존재하는 고온의 원형 실린더의 크기 변화에 따른 밀폐계 내부의 3 차원 자연대류 현상에 대한 수치해석을 수행하였다. 본 연구에서 고려한 Rayleigh 수는 $10^3$부터 $10^5$까지며 Prandtl 수는 0.7 이다. 내부 원형 실린더의 반경은 0.1L 부터 0.4L 범위에서 0.1L 간격으로 변경하였다. 본 연구에서 고려한 모든 Rayleigh 수와 실린더 반경의 범위에서 열유동장은 정상 상태의 특성을 보였다. 내부 원형 실린더의 크기가 증가하여 실린더 표면과 밀폐계 벽면이 가까워 질수록 실린더 표면과 밀폐계 벽면의 평균 Nusselt 수는 증가하였다. 내부 원형 실린더의 크기 변화에 따른 정육면체 밀폐계 내부의 자연대류 현상은 온도장, 유동장 및 표면 평균 Nusselt 수의 분포를 바탕으로 분석하였다.

넓은 수평 환형 공간에서의 중간 Prandtl수 유체의 자연 대류의 천이 (Free Convective Transition of Intermediate Prandtl-Number Fluids in a Wide-Gap Horizontal Annulus)

  • 유주식
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.169-176
    • /
    • 2000
  • Natural convection in a wide-gap horizontal annulus is considered, and the transition of flows and the bifurcation phenomenon are investigated for the fluids with Pr=0.2 and 0.3. At Pr=0.2, a bicellular flow pattern is observed at high Rayleigh number, and the solution is unique. At Pr=0.3, both the steady unicellular and bicellular flows exist above a certain critical Rayleigh number. For the fluids of Pr=0.2, the bicellular flow can be obtained by the impulsive heating of the inner cylinder, but it is not obtained from the zero initial condition for Pr=0.3. Hysteresis phenomena have not been observed. A transition from a bicellular flow to a unicellular flow occurs for Pr=0.3.

Supersonic Combustion Modeling and Simulation for Scramjets

  • Ladeinde, Foluso
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.23-24
    • /
    • 2015
  • In this talk, we will present what we believe is the state-of-the-art of the numerical modeling and simulation of the combustion processes as they relate to typical scramjet engines. The free-stream Mach number is hypersonic, but the speed is not sufficiently decelerated at the inlet/isolator, as in ramjets, so that combustion takes place under supersonic conditions. This creates some difficulties for most turbulence-combustion models. We delve into the details of these problems, by discussing the software programs that have a long track record for scramjet combustion simulation; with a focus on the accuracy of the baseline numerical methods used, the turbulence modeling/simulation approach, the comparative fidelity of the turbulence-combustion interaction models, ability to simulate premixed/non-premixed/partially-premixed, quenching/re-ignition capabilities, the numerical spark-plug method, Damkholer number regimes supported, and the effects of variable Prandtl, Schmidt, and Lewis numbers. Validation results from high-speed and low-speed combustion applications will also be presented.

  • PDF

경사진 평행평판 내 고 점성유체의 혼합대류 열전달 특성 및 가시화에 관한 연구 (A Study on the Visualization and Characteristics of Mixed Convection between Inclined Parallel Plates Filled with High Viscous Fluid)

  • 박일룡;배대석
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.698-706
    • /
    • 2006
  • Experiment and numerical calculation have been peformed to investigate mixed convection heat transfer between inclined parallel plates. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. The governing equations are discretized using the finite volume method. The results are presented for the Reynolds number ranges from 0.004 to 0.062, the angle of inclination, ${\Theta}$, from 0 to 45 degree and Prandtl number of the high viscosity fluid is 909. The results show velocity, temperature and mean Nusselt numbers distributions. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}{\Theta}<30^{\circ}$, Re<0.062, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

액적이탈을 고려한 관내 응축열전달계수 계산 모델 (A modeling of in-tube condensation heat transfer considering liquid entrainment)

  • 권정태;안예찬;김무환
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.946-955
    • /
    • 1998
  • Local condensation heat transfer coefficients in tubes were calculated by solving momentum and energy equations for annular film with liquid entrainment. The turbulent eddy distribution across the liquid film has been proposed and the calculated heat transfer coefficients were presented. Also turbulent Prandtl number effects on condensation heat transfer were discussed from three Pr$\_$t/ models. Finally, the calculated condensation heat transfer coefficients of R22 were compared with some correlations frequency referred to in open literature. This calculation model considering liquid entrainment predicted well the in-tube condensation heat transfer coefficient of R22 than the model not considering liquid entrainment. The effect of entrainment on heat transfer was predominant for high quality and high mass flux when the liquid film was turbulent.

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF

Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers.)

  • 서무교;김영수
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

점성 및 비점성 유동장 해석을 위한 BGK 수치기법의 효율적 계산 (Efficient Calculation of Gas-kinetic BGK scheme for Analysis of Inviscid and Viscous Flows)

  • 채동석;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 1998
  • From the Boltzmann equation with BGK approximation, a gas-kinetic BGK scheme is developed and methods for its efficient calculation, using the convergence acceleration techniques, are presented in a framework of an implicit time integration. The characteristics of the original gas-kinetic BGK scheme are improved in order for the accurate calculation of viscous and heat convection problems by considering Osher's linear subpath solutions and Prandtl number correction. Present scheme applied to various numerical tests reveals a high level of accuracy and robustness and shows advantages over flux vector splittings and Riemann solver approaches from Euler equations.

  • PDF

양력선 이론을 이용한 EDISON CFD 해석자의 검증

  • 김태희
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2016년)
    • /
    • pp.101-105
    • /
    • 2016
  • Prandtl's Lifting-line theory is the classical theory of calculating aerodynamic properties. Though it is classical method, it predicts the aerodynamic properties well. By lifting-line theory, high aspect ratio is critical factor to decrease induced drag. And 'elliptic-similar' wing also makes the minimum induced drag. But due to the problem of manufacturing, tapered wing is preferred and have been utilized. In this Paper, by using Edison CFD, verifying the classical lifting-line theory. To consider induced drag only, using Euler equation as governing equation instead of full Navier-Stokes equation. Refer to the theory, optimum taper ratio which makes the minimum induced drag is 0.3. Utilizing the CFD results, plotting oswald factor over various taper ratio and investigating whether the consequences are valid or not. As a result, solving Euler equation by EDISON CFD cannot guarantee the theoretical values because it is hard to set the proper grid to solve. Results are divided into two cases. One is the values are decreased gradually and another seems to following tendency, but values are all negative number.

  • PDF