• Title/Summary/Keyword: High Power Diode Laser

Search Result 142, Processing Time 0.027 seconds

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Laser Welding of Thermoplastics Using the Absorbing Materials (열가소성 플라스틱의 흡수체를 이용한 레이저 접합)

  • Seo M.H.;Ryu K.H.;Nam G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.430-433
    • /
    • 2005
  • Laser bonding between similar and dissimilar thermoplastics has been investigated by making use of laser transmission weld technique. Spot welding of two layers of plastic materials has been demonstrated by using of a high-quality diode-laser with 808nm wavelength. Weld areas increases according to power density, exposure time. The results of peel out test show that peel strengths increase with the area of molten plastics. Layers, which have the same chemical properties, have good bonding qualities. A bonding method which dye film is coated on the interface is used for laser bonding between plastics with high transmission for laser wavelength. Laser transmission bonding is worthy of attention because it is not in contact, requires a few tooling devices, allows a flexible energy delivery and produces nearly invisible welds

  • PDF

Fabrication of a AlGaAs high power (~20W) laser diode array (20W급 AlGaAs 레이저 다이오드 어레이의 제작)

  • 박병훈;손낙진;배정훈;권오대
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.20-24
    • /
    • 1997
  • We have successfully fabricated high power (~20W) laser diode array, which are useful for pumping Nd:YAG lasers. The laser diode aray has 20 100.mu.m-wide cahnnels of which space was adjusted to 350.mu.m to improve thermal characteristics. And channel width is 100.mu.m. For an uncoated LD array, the output power of 15.66W has been obtained at 41A under quasi-CW operation, which results in about 0.42W/A slope efficiency. After aR(5%) and HR (95%) coatings on both facets, the output power was improved up to 21.18W at 40A under the same operation as above and the slope efficiency was 0.795W/A. On the other hand, by using a near field measurement system consisting of objective lens, eyepiece, CCD camera and image processing board, the typical near field patten of 1*20 LD array was observed.

  • PDF

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Effect of Particle Contamination of Objective Lens in a CD-ROM Drive on Laser Diode Power and Photo Diode RE Signal (CD-ROM 드라이브의 대물렌즈 입자오염이 레이저 다이오드 파워와 포토 다이오드 RF 신호에 미치는 영향)

  • Pae, Yang-Il;Lee, Jae-Ho;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Airborne contaminant particles are intruded into optical disk drive(ODD) due to the flow caused by disk rotation and can be adhered to objective lens, which causes read/write errors. Such a phenomenon can be a serious problem for high-density storage devices. The purpose of this paper is to understand the effect of particle contamination of objective lens in a CD-ROM drive on laser diode power and photo diode RF signal. The measurements of laser power and readout RF signal were carried out by using a laser power meter and a time interval analyzer, respectively. The parameters for estimating a readout-signal' distortion were its jitter and amplitude. Alumina(Al$_2$O$_3$) particles were used as test dust particles. The results show that the failure for data access happened as the degree of lens contamination was greater than 20%.

Study on the laser transmission-welding of thermoplastics (열가소성 플라스틱의 레이저 투과 접합에 환한 연구)

  • Seo Myung-hee;Ryu Kwang-hyun;Nam Gi-jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.34-40
    • /
    • 2005
  • Laser welding of thermoplastics is a new jointing technique with a host of advantages. It is not only another extremely useful welding method but also a cost-effective alternative to traditional techniques involving screws or adhesives. Transmission laser-welding of thermoplastics such as polycarbonate(PC), polypropylene(PP), polyvinyl chloride(PVC), low density polyethylene(LDPE) and acrylic using a high power diode laser has been studied experimentally. The optical transmission of each plastic has been measured at laser wavelength of 808nm. The weld process has been characterized by the specific energy and weld time required for each plastic. The characteristics of laser welding between same plastics have also been analyzed.

Effect of Particle Contamination on Objective Lens in a CD-ROM Drive on Laser Diode Power and Photo Diode RF Signal (CD-ROM 드라이브의 대물렌즈 입자오염이 Laser Diode의 Power와 Photo Diode의 RF Signal에 미치는 영향)

  • Pae, Yang-Il;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1429-1434
    • /
    • 2003
  • A number of dust particles are intruded into ODD(Optical disk drive) due to the flow caused by disk rotation and are adhered to a lens or disk surface. The space between the disk and the lens is being reduced. Someone indicates the problems of this drive that are relatively small data storing capacity and slow access time. In recent, the problems of this optical disk drive mentioned above are being solved by adding the speed of the disk's revolution, making the actuator high-speed or light, and making the beam spot size smaller than making the space narrow between disk and lens. These particle contamination affects seriously RF Signal, readout signal in an ODD. Especially, the affected parts by a particle contamination in an ODD's readout signal are objective lens and media.

  • PDF

Efficient Diode Pumped High Power Nd:YAG Laser with a Gold Coated Flow Tube (금코팅 유리관 반사체를 이용한 다이오드 여기 고출력 고효율 Nd:YAG 레이저)

  • 이종민;문희종;이종훈;한재민;이용주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.186-190
    • /
    • 1998
  • We fabricated a diode-side pumped high power Nd:YAG laser with a gold coated flow tube(diameter of 10mm) and three sets of 140W diode bar. The diameter of Nd:YAG rod was 6mm and its length was 130mm. We obtained 130W cw power from a linear resonator with an 11% output coupler, which corresponds to the slope efficiency of 43% and the optical efficiency of 31%. The measured beam quality factor(M$^2$) reached about 85 which is fairly large due to the large size of the rod. Thermal lensing of the rod was measured to be 5.3-7.4D/$kW_{pump}$ when the laser was operating.

  • PDF

Design and Analysis of a Widely Tunable Sampled Grating DFB Laser Diode with High Output Power

  • Kim, Soo-Hyun;Chung, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.13-16
    • /
    • 2004
  • A widely tunable SG-DFB (Sampled Grating Distributed Feedback) laser diode is proposed and its feasibility is confirmed through simulation. The new SG-DFB laser diode is composed of a pair of sampled gratings, some parts of which are gain sections and the other parts of which are phase control sections. It is shown that a few tens of nanometers can be tuned through the adjustment of two currents into the phase control sections. Higher output power is expected compared with a SG-DBR laser diode with similar parameters. The dynamic single mode operation is also observed in the time-domain simulation.

Influence of Emitter Width on the Performance of 975-nm (In,Ga)(As,P)/(Al,Ga)As High-power Laser Diodes

  • Yang, Jung-Tack;Kim, Younghyun;Pournoury, Marzieh;Lee, Jae-Bong;Bang, Dong-Soo;Kim, Tae-Kyung;Choi, Woo-Young
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.445-450
    • /
    • 2019
  • The influence of high-power laser diode (HPLD) emitter width on the device performance is investigated for 975-nm (In,Ga)(As,P)/(Al,Ga)As broad-area HPLDs, using self-consistent electro-thermal-optical simulation. To guarantee the simulation's accuracy, simulated results are matched with the measured results for a sample HPLD with fitting parameters. The influences of HPLD emitter width on temperature distribution, output power, and the beam product parameter (BPP) are analyzed for three different emitter widths of 50, 70, and $90{\mu}m$. It is found that a device with smaller emitter width exhibits both thermal rollover and thermal blooming at lower output power, but smaller BPP.