• Title/Summary/Keyword: High Power Converter

Search Result 2,605, Processing Time 0.027 seconds

Single Power-conversion AC-DC Converter with High Power Factor (고역률을 갖는 단일 전력변환 AC-DC 컨버터)

  • Cho, Yong-Won;Park, Chun-Yoon;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a single power-conversion ac-dc converter with a dc-link capacitor-less and high power factor. The proposed converter is derived by integrating a full-bridge diode rectifier and a series-resonant active-clamp dc-dc converter. To obtain a high power factor without a power factor correction circuit, this paper proposes a suitable control algorithm for the proposed converter. The proposed converter provides single power-conversion by using the proposed control algorithm for both power factor correction and output control. Also, the active-clamp circuit clamps the surge voltage of switches and recycles the energy stored in the leakage inductance of the transformer. Moreover, it provides zero-voltage turn-on switching of the switches. Also, a series-resonant circuit of the output-voltage doubler removes the reverse-recovery problem of the output diodes. The proposed converter provides maximum power factor of 0.995 and maximum efficiency of 95.1% at the full-load. The operation principle of the converter is analyzed and verified. Experimental results for a 400W ac-dc converter at a constant switching frequency of 50kHz are obtained to show the performance of the proposed converter.

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

High Power Factor 3-Phase AC-DC Converter without LC Filter (LC필터가 없는 고역율 3상 AC-DC 컨버터)

  • Nam, Jing-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1894-1898
    • /
    • 2007
  • Conventional 3-phase AC-DC converter is frequently in the industrial world. In this paper, the high power factor 3-phase AC-DC converter which can reduce its weight and volume is proposed. The high power factor 3-phase AC-DC converter without LC filter can realize light weight and low-cost. In spite of elimination of LC filter, the performance of the high power 3-phase AC-DC converter is almost the same as conventional 3-phase AC-DC converter. Finally, this result can be expected to be applied to aviation and the space industry with high power density and high power factor.

A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range (넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터)

  • Han, Jung-Kyu;Choi, Seung-Hyun;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.