• Title/Summary/Keyword: High Performance Computing in CFD

Search Result 21, Processing Time 0.026 seconds

High Performance Computing Applications In Korean Trainer Development Program

  • Roh Hyun-Woo;Kim Si-Hong;Jeong In-Myon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.121-125
    • /
    • 2006
  • CFD has been used in aircraft development and broaden its influence in various fields of industries. This paper briefly introduces the historical trends of computing system, the overview of CFD applications in Korean Supersonic Trainer Development Program and the demand for CFD software in industry points of view.

  • PDF

A Fundamental Study of Thermal-Fluid Flow Analysis using High Performance Computing under the GRID (그리드 환경하에서 고성능 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초연구)

  • Hong, Seung-Do;Lee, Dae-Sung;Lee, Jae-Ryong;Ha, Man-Yeong;Lee, Sang-San
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.928-933
    • /
    • 2003
  • For simulation of three-dimensional turbulent flow with LES and DNS takes much time and expense with current available computing resources. It is nearly impossible to simulate turbulent flow with high Reynolds number. So, the emerging alternative is the Grid computing for needed computation power and working environment. In this study, the CFD code was parallelized to adapt it for the parallel computing under the Grid environment. In the first place, the Grid environment was built to connect the PC-Cluster facilities belong to the different institutions using communication network system. And CFD applications were calculated to check the performance of the parallel code developed for the Grid environment. Although it is a fundamental study, it brings about a important meaning as first step in research of the Grid.

  • PDF

DEVELOPMENT OF SUPERCOMPUTING APPLICATION TECHNOLOGY AND ITS ACHIEVEMENTS (슈퍼컴퓨팅 응용기술 개발 및 성과)

  • Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.207-207
    • /
    • 2006
  • Hardware technologies for high-performance computing has been developing continuously. However, actual performance of software cannot keep up with the speed of development in hardware technologies, because hardware architectures become more and more complicated and hardware scales become larger. So, software technique to utilize high-performance computing systems more efficiently plays more important role in realizing high-performance computing for computational science. In this paper, the effort to enhance software performance on large and complex high-performance computing systems such as performance optimization and parallelization will be presented. Our effort to serve high-performance computational kernels such as high-performance sparse solvers and the achievements through this effort also will be introduced.

  • PDF

STUDY ON HIGH RESOLUTION SCHEMES SUITABLE FOR AN 3-D CFD CODE(POWERCFD) USING UNSTRUCTURED CELL-CENTERED METHOD AND INTERFACE CAPTURING METHOD (비정렬 셀 중심방법 및 경계면포착법을 사용하는 3차원 유동해석코드(PowerCFD)에 적합한 HR 해법에 관한 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are comparatively studied with respect to the accurate capturing of fluid interfaces throughout the application to two typical test cases of a translation test and a collapsing water column problem with a return wave. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method and an interface capturing method, which is based on the finite-volume technique and fully conservative. The calculated results show that SMART scheme gives the best performance with respect to accuracy and robustness.

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Computational Fluid Dynamics Research based on National Grid Project (국가 그리드 구축을 통한 전산유체역학 연구)

  • Cho Kum Won;Park Hyungwoo;Lee Sangsan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174-181
    • /
    • 2001
  • The Gird is a communication service that collaborates dispersed high performance computers, large-scale databases and modern equipments so that those can be shared and worked together. In this paper. CFD research based on National Grid project is discussed. To validate the Grid technology, the flow past ONERA M6 wing and the flow past infinite wing are simulated on the National Grid testbed.

  • PDF

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

STUDY ON HIGH RESOLUTION SCHEMES IN INTERFACE CAPTURING METHODS WITH UNSTRUCTURED GRIDS (비정렬격자계를 사용하는 경계면포착법에서 HR도식에 관한 연구)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.51-56
    • /
    • 2006
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are applied to two typical test cases of a translation test and a collapsing water column problem for the accurate capturing of fluid interfaces. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method, which is based on the finite-volume technique and fully conservative. The calculated results are found to show that SMART scheme gives the best performance with respect to accuracy and robustness.

  • PDF

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF