• Title/Summary/Keyword: High Performance Anion-Exchange Chromatography (HPAEC)

Search Result 9, Processing Time 0.022 seconds

Neutral and Amino Sugars Composition of a Lectin from Maackia fauriei (Maackia fauriei 유래 렉틴의 중성당 및 아미노당 조성)

  • Na, Kwang-Heum;Park, Byung-Tae;Park, Jae-Wan;Han, Kyong-Jin;Park, Hyun-Joo;Kim, Ha-Hyung
    • YAKHAK HOEJI
    • /
    • v.53 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • The glycosylation of therapeutic glycoproteins can affect their efficacy, stability, solubility, and half-life. Analyzing the composition of monosaccharides, such as that of neutral and amino sugars, is the first step for elucidating the structure of glycan attached to glycoproteins. In the present study, neutral and amino sugars of lectin obtained from Maackia fauriei were analyzed using an enzyme-linked lectinsorbent assay (ELLA) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Peroxidase-labeled lectins such as concanavalin A, Ricinus communis agglutinin, and soybean agglutinin were used for ELLA, since they specifically bind to the monosaccharide residue most frequently encountered in a glycan. The hydrosylate of lectin was prepared by treatment with trifluoroacetic acid, which resulted in the lectin mainly possessing the N-glycan consisting of 98.1 pmol Fuc, 342.1 pmol GlcN, 51.9 pmol Gal, 678.9 pmol Man, and 330.7 pmol Xyl. The present results demonstrate that ELLA and HPAEC-PAD are very effective methods for rapidly estimating the types and relative amounts of monosaccharides in intact glycoproteins.

Analysis of the Structure and Stability of Erythropoietin by pH and Temperature Changes using Various LC/MS

  • Chang, Seong-Hun;Kim, Hyun-Jung;Kim, Chan-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2663-2670
    • /
    • 2013
  • The purpose of stability testing is to provide evidence about how the quality of a drug varies with time under the influence of a variety of environmental factors. In this study, erythropoietin (EPO) was analyzed under different pH (pH 3 and pH 9) and temperature ($25^{\circ}C$ and $40^{\circ}C$) conditions according to current Good Manufacturing Practice (cGMP) and International Conference on Harmonisation (ICH) guidelines. The molecular weight difference between intact EPO and deglycosylated EPO was determined by SDS-PAGE, and aggregated forms of EPO under thermal stress and high-pH conditions were investigated by size exclusion chromatography. High pH and high temperature induced increases in dimer and high molecular weight aggregate forms of EPO. UPLC-ESI-TOF-MS was applied to analyze the changed modification sites on EPO. Further, normal-phase high-performance liquid chromatography was performed to identify proposed glycan structures and high pH anion exchange chromatography was carried out to investigate any change in carbohydrate composition. The results demonstrated that there were no changes in modification sites or the glycan structure under severe conditions; however, the number of dimers and aggregates increased at $40^{\circ}C$ and pH 9, respectively.

Comparison of Volatile Fatty Acids, Monosaccharide Analysis and Metabolic Profiling in Rumen Fluid According to Feeding Methods (사료 급여 방식에 따른 반추위액 내 휘발성지방산과 단당류 비교 분석과 대사산물 분석)

  • Eom, Jun-Sik;Lee, Shin-Ja;Lee, Yoo-Gyung;Lee, Sung-Sill
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.814-824
    • /
    • 2018
  • This study was conducted to investigate VFA, monosaccharides and metabolites in rumen fluid according to feeding methods. Three castrated Hanwoo steers were used to the $3{\times}3$ Latin square design, 10 day for the diet adaptation period. VFA and monosaccharides which were not detected by HPLC and HPAEC however, those were detected by $^1H-NMR$. Among the metabolites measured by $^1H-NMR$ carbohydrate metabolites, pyruvate was detected only in the rumen fluid before feeding and succinate was detected before and after feeding rumen fluid. In amino acid total 9 metabolites were detected. In lipid metabolites, ethylene glycol was significantly higher (P<0.05) in before feeding Con group. In aliphatic acylic metabolite, trimethylamine N-oxide was no significant difference observed compare to Con group. In this study, many metabolites were observed in the rumen fluid by $^1H-NMR$, and it confirmed that rumen metabolic products were changed by feeding methods.

Compositional Characterization and Colorant Identification of Omija (Schizandra chinensis) Fruit Extract

  • Kim, Seol-Hee;Lee, Byung-Hoo;Kim, Jong-Chul;Choi, Sung-Seen;Kim, Gwe-Won;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.787-793
    • /
    • 2008
  • A major polyphenolic compound extracted from omija (Schisandra chinensis) fruit was structurally identified, and its composition of major nutrients was investigated as well in this study. A dominating high performance liquid chromatography (HPLC) peak of water-extracted anthocyanin represented 94.1% of total absorbable compounds at 520 nm, which was further identified with HPLC-mass spectrometry (MS). As a result, mass-to-charge ratio (m/z) of the predominant anthocyanin was determined to be 727, and it was identical to molecular mass of cyanidin-3-xylosylrutinoside (Cya-3-O-xylrut). This is the first report that colorant of omija is predominantly composed of Cya-3-O-xylrut. Omija fruit contained exclusively 3 types of monosaccharide such as glucosc (0.68 g), galactose (0.01 g), and fructose (0.52 g) per 100 g of fruits. Several organic acids, citric (3.29 g), malic (1.4 g), acetic (0.4 g), and succinic acids (0.36 g) per 100 g of fruits, were detected by high performance anion exchange chromatography (HPAEC) analysis. During the compositional analysis of tree amino acid by HPLC, it was noticed that omija fruit contained substantial amount (0.01 g/100 g of fruits) of $\gamma$-amino butyric acid (GABA).

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Enzymatic Synthesis and Characterization of Galactosyl Trehalose Trisaccharides

  • Kim, Bong-Gwan;Lee, Kyung-Ju;Han, Nam-Soo;Park, Kwan-Hwa;Lee, Soo-Bok
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • [ ${\alpha},\;{\alpha}$ ]-Trehalose was efficiently modified by a transgalactosylation reaction of Escherichia coli ${\beta}-galactosidase$ using lactose as a donor to yield two galactosyl trehalose trisaccharides. The reaction products of trehalose by the enzyme were observed by thin layer chromatography (TLC) and high performance anion exchange chromatography (HPAEC) and were purified by BioGel P2 gel permeation chromatography and recycling preparative HPLC. Liquid chromatography-mass spectrometry (LC-MS) and ^{13}C$ nuclear magnetic resonance (NMR) analyses revealed that the structures of the main products were $6^2-{\beta}-D-galactosyl$ trehalose (1) and $4^2-{\beta}-D-galactosyl$ trehalose (2). A reaction of 30%(w/v) trehalose and 15%(w/v) lactose at pH 7.5 and $45^{\circ}C$ resulted in a total yield of approximately 27-30% based on the amount of trehalose used. The galactosyl trehalose products were not hydrolyzed by trehalose. In addition the mixture of transfer products (9:1 ratio of 1 to 2) showed higher thermal stability than glucose, lactose, and maltose, but less than trehalose, against heat treatment over $100^{\circ}C$ at pH 4 and 7. It also exhibited better thermal stability than sucrose at pH 4 alone.

Anticancer Activity of Sulfated Polysaccharides Isolated from the Antarctic Red Seaweed Iridaea cordata

  • Kim, Hak Jun;Kim, Woo Jung;Koo, Bon-Won;Kim, Dong-Woo;Lee, Jun Hyuck;Nugroho, Wahyu Sri Kunto
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2016
  • This study aimed to isolate and characterize sulfated polysaccharides (SPs) from Iridaea cordata and evaluate their anticancer activity. SPs of the Antarctic red seaweed were obtained by $CaCl_2$ (SP1) and ethanol precipitations (SP2) following diluted acid extraction at room temperature. Yields of SP1 and SP2 were approximately 14% and 23%, respectively, of the dry weight of red seaweed. The average molecular mass of the SP1 and SP2 was estimated about $1.84{\times}10^3$ and $1.42{\times}10^3kDa$, respectively, by size-fractionation High-Performance Liquid Chromatography (HPLC). From the High-Performance Anion-Exchange Chromatography-Pulsed Amperometric Detection (HPAEC-PAD) analysis, the main monosaccharide was galactose with glucose and fucose as minor components. The sulfate content of SP2 (40.4%) was slightly higher than that of SP1 (33.8%). The FT-IR spectra also showed characteristic band of carrageenan-like sulfated polysaccharides. Taken together the SPs are thought to be carrageenan-like sulfated galactan. The polysaccharides (SPs) from I. cordata exhibited weak antitumor activity against PC-3 (prostate cancer), HeLa (cervical cancer), and HT-29 (human colon adenocarcinoma). To our knowledge, this is the first data on biological activity of the Antarctic red seaweed I. cordata.

Studies on the Changes of Oligosaccharide Contents in Rehmanniae Radix preparata According to Various Processing methods (포제에 따른 숙지황(熟地黃)의 당(糖) 성분 변화 연구)

  • Choi, Ho-Young;Kwon, Seung-Ro;Kim, Hyo-Geun;Ham, In-Hye;Lee, Jae-Jun;Lee, Je-Hyeon;Hong, Seon-Pyo;Kim, Do-Hoon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.261-270
    • /
    • 2007
  • Objective : The 5-HMF was not index material suitable to do the quality control of Rehmanniae Radix Preparata. In this study, We estimated the changes of oligosaccharide contents in Rehmanniae Radix Preparata using high-performance anion-exchange chromatography with pulsed amperometric detection(HPAEC-PAD). Methods : The analysis of oligosaccharide was conducted by HPAEC-PAD with Carbopac PA1, $250{\times}4mm$, 5um, and Carbopac PA1 guard column. Column temperature was kept at $30^{\circ}C$. Elution was carried out at 1000 ${\mu}l/min$ with 70mM NaOH and the injection volume was $10{\mu}l$. Each component was detected by PAD. Results : Nine constituents were found from merchandising Rehmanniae Radix Preparata(MR), while seven constituents were found in various processed Rehmanniae Radix Preparata. Not all constituents were defined but stachyose and raffinose were found in all cases. And The most common constituents of Rehmanniae radix was stachyose. In the course of processing, most of stachyose and raffinose were decreased. Stachyose was decreased slowly in the course of processing with rice wine(RR), amomi and rice wine(AR), and crataegi and rice wine(CR). However stachyose was decreased rapidly in the course of processing with fresh rehmannia juice(FR). The method with crataegi and rice wine(CR) showed the smallest decrease of stachyose. And processing method with crataegi and rice wine(CR) showed the most abundant amount for stachyose after the nineth processing. Conclusion : The changes of oligosaccharides in the course of processing were a very important direct barometers to do the quality control and set up a standard of Rehmanniae Radix Preparata.

  • PDF

Heterologous Expression and Characterization of Glycogen Branching Enzyme from Synechocystis sp. PCC6803

  • Lee, Byung-Hoo;Yoo, Young-Hee;Ryu, Je-Hoon;Kim, Tae-Jip;Yoo, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1386-1392
    • /
    • 2008
  • A gene (sll0158) putatively encoding a glycogen branching enzyme (GBE, E.C. 2.4.1.18) was cloned from Synechocystis sp. PCC6803, and the recombinant protein expressed and characterized. The PCR-amplified putative GBE gene was ligated into a pET-21a plasmid vector harboring a T7 promoter, and the recombinant DNA transformed into a host cell, E. coli BL21(DE3). The IPTG-induced enzymes were then extracted and purified using Ni-NTA affinity chromatography. The putative GBE gene was found to be composed of 2,310 nucleotides and encoded 770 amino acids, corresponding to approx. 90.7 kDa, as confirmed by SDS-PAGE and MALDI-TOF-MS analyses. The optimal conditions for GBE activity were investigated by measuring the absorbance change in iodine affinity, and shown to be pH 8.0 and $30^{\circ}C$ in a 50 mM glycine-NaOH buffer. The action pattern of the GBE on amylose, an $\alpha$-(1,4)-linked linear glucan, was analyzed using high-performance anion-exchange chromatography (HPAEC) after isoamylolysis. As a result, the GBE displayed $\alpha$-glucosyl transferring activity by cleaving the $\alpha$-(1,4)-linkages and transferring the cleaved maltoglycosyl moiety to form new $\alpha$-(1,6)-branch linkages. A time-course study of the GBE reaction was carried out with biosynthetic amylose (BSAM; $M_p{\cong}$8,000), and the changes in the branch-chain length distribution were evaluated. When increasing the reaction time up to 48 h, the weight- and number-average DP ($DP_w$ and $DP_n$) decreased from 19.6 to 8.7 and from 17.6 to 7.8, respectively. The molecular size ($M_p$, peak $M_w{\cong}2.45-2.75{\times}10^5$) of the GBE-reacted product from BSAM reached the size of amylose (AM) in botanical starch, yet the product was highly soluble and stable in water, unlike AM molecules. Thus, GBE-generated products can provide new food and non-food applications, owing to their unique physical properties.