• 제목/요약/키워드: High Maneuvering

검색결과 107건 처리시간 0.024초

Stochastic Differential Equations for Modeling of High Maneuvering Target Tracking

  • Hajiramezanali, Mohammadehsan;Fouladi, Seyyed Hamed;Ritcey, James A.;Amindavar, Hamidreza
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.849-858
    • /
    • 2013
  • In this paper, we propose a new adaptive single model to track a maneuvering target with abrupt accelerations. We utilize the stochastic differential equation to model acceleration of a maneuvering target with stochastic volatility (SV). We assume the generalized autoregressive conditional heteroscedasticity (GARCH) process as the model for the tracking procedure of the SV. In the proposed scheme, to track a high maneuvering target, we modify the Kalman filtering by introducing a new GARCH model for estimating SV. The proposed tracking algorithm operates in both the non-maneuvering and maneuvering modes, and, unlike the traditional decision-based model, the maneuver detection procedure is eliminated. Furthermore, we stress that the improved performance using the GARCH acceleration model is due to properties inherent in GARCH modeling itself that comply with maneuvering target trajectory. Moreover, the computational complexity of this model is more efficient than that of traditional methods. Finally, the effectiveness and capabilities of our proposed strategy are demonstrated and validated through Monte Carlo simulation studies.

하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행 (Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Tracking Error Performance of Tracking Filters Based on IMM for Threatening Target to Navel Vessel

  • Fang, Tae-Hyun;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.456-462
    • /
    • 2007
  • Tracking error performance is investigated for the typical maneuvering pattern of the anti-ship missile for tracking filters based on IMM filter in both clear and cluttered environments. Threatening targets to a navel vessel can be categorized into having three kinds of maneuvering patterns such as Waver, Pop-Up, and High-Diver maneuvers, which are classified according to launching platform or acceleration input to be applied. In this paper, the tracking errors for three kinds of maneuvering targets are represented and are investigated through simulation results. Studying estimation errors for each maneuvering target allows us to have insight into the most threatening maneuvering pattern and to construct the test maneuvering scenario for radar system validation.

비선형 선박운동을 고려한 대파고 파랑 중 조종성능에 대한 연구 (Effects on Nonlinear Ship Motions on Ship Maneuvering in Large Amplitude Waves)

  • 서민국;김용환;김경환
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.516-527
    • /
    • 2011
  • This paper considers a numerical analysis of ship maneuvering performance in the high amplitude incident waves by adopting linear and nonlinear ship motion analysis. A time-domain ship motion program is developed to solve the wave-body interaction problem with the ship slip speed and rotation, and it is coupled with a modular type 4-DOF maneuvering problem. Nonlinear Froude-Krylov and restoring forces are included to consider weakly nonlinear ship motion. The developed method is applied to observe the nonlinear ship motion and planar trajectories in maneuvering test in the presence of incident waves. The comparisons are made for S-175 containership with existing experimental data. The nonlinear computation results show a fair agreement of overall tendency in maneuvering performance. In addition, maneuvering performances with respect to wave slope is predicted and reasonable results are observed.

고중력 가속기동하에서의 생체동역학적 모의실험 (A Biodynamic Simulation under High Gravity Maneuvering)

  • 이창민;박세권
    • 대한산업공학회지
    • /
    • 제18권2호
    • /
    • pp.1-9
    • /
    • 1992
  • The purpose of this paper is to investigate the dynamic situation of the biomechanical responses of a pilot that occur before the black out during high gravity maneuvering. The computer biodynamic simulations using the Articulated Total Body(ATB) model show the following results : 1) the center of gravity(c. g) offsets of a helmet have significant effects on the head deflection angle which is closely connected with the head down : 2) the average and maximum gravity forces are smaller in the curvilinear type of an acceleration than in the straight type of the acceleration, and it is applied to the case of the head deflection angle. We suggest that the new concept of protective device should be necessary to prevent the head down during high gravity maneuvering.

  • PDF

클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구 (Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF)

  • 김다솔;송택렬;오원천
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

측정치 시간지연을 보상한 고속, 고기동 항체용 전자광학 추적장비 항법 알고리즘 (Navigation Algorithm for Electro-Optical Tracking System of High Speed and High Maneuvering Vehicle with Compensation of Measurement Time-Delay)

  • 손재훈;최우진;오상헌;이상정;황동환
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1632-1640
    • /
    • 2021
  • In order to improve target tracking performance of the conventional electro-optical tracking system (EOTS) in the high speed and high maneuvering vehicle, an EOTS navigation algorithm is proposed, in which an inertial measurement unit(IMU) is included and navigation results of the vehicle are used. The proposed algorithm integrates vehicle's navigation results and the IMU and the time-delay and the scale factor errors are augmented into the integrated Kalman filter. In order to evaluate the proposed navigation algorithm, a land vehicle navigation experiments were performed a navigation grade navigation system, TALIN4000 and a tactical grade IMU, LN-200 and a equipment for roll motion were loaded on the land vehicle. The performance evaluation results show that the proposed algorithm effecting works in high maneuvering environment and for the time-delay.

전차륜 독립휠 구동 및 조향 제어 기반 특수목적용 6WD/6WS 차량의 주행제어 알고리즘 연구 (A Study on Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles)

  • 이대옥;여승태
    • 한국군사과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.240-249
    • /
    • 2013
  • This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving, steering, vehicle stability, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink dynamics model and experiments using HIL simulator mounting the real controllers with the designed control algorithms prove the improved performances in terms of vehicle stability and maneuverability.

Perception of Ship's Movement in Docking Maneuvering using Ship-Handling Simulator

  • Arai, Yasuo;Minamiya, Taro;Okuda, Shigeyuki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.3-10
    • /
    • 2006
  • Recently it is coming to be hish reality on visual system in ship-handling simulator depending on the technical development of 3D computer graphics. Even with high reality, it is possible that visual information presented seafarers through screen or display is not equivalent to the real world. In docking maneuvering, visual targets or obstructs are sighted close to ship's operator or within few hundred meters, so it might be possible to affect visual information such as the difference between both eyes' and single eye's visual sight. Because it is not possible to perceive of very slow ship's movement by visual in case of very large vessels, so the Doppler Docking SONAR and/or Docking Speed and Distance Measurement Equipment were developed and applied for safety docking maneuvering. By the way, the simulator training includes the ship's maneuvering training in docking, but in Ship-handling Simulator and also onboard, there are some limitations of perception of ship's movement with visual information. In this paper, perception of ship's movement with visual system in Ship-handling Simulator and competition of performances of visual systems that are conventional screen type with Fixed Eye-point system and Mission Simulator. We got some conclusions not only on the effectiveness for visual system but also on the human behavior in docking maneuver.

  • PDF

중력 가속도로 인한 의식상실 감지 및 자동 회복 시스템 개발 (Development of Gravity-induced Loss of Consciousness(GLOC) Monitoring System and Automatic Recovery System)

  • 김종섭;황병문;강임주;장순용;김광윤;박명환
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.704-713
    • /
    • 2011
  • For many years, many pilots lost their lives and aircrafts due to GLOC(Gravity-induced Loss Of Consciousness). Due to the emergence of high-gravity maneuvering aircraft such as the F-16, F-15 and T-50, the automatic GLOC detection and recovery systems are necessary to increase the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering. This paper addresses the design of GLOC detection, warning and recovery algorithm based on a model of supersonic jet trainer. The system is solely controlled by the pilot's control input (i.e., control stick force) and aircraft status such as attitude, airspeed, altitude and so forth. And, moreover, it does not depend upon any pilot physiological condition. The test evaluation results show that the developed system supports the recovery of an aircraft from the unusual aircraft attitude and improves the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering.