• 제목/요약/키워드: High Mach Number Flow

Search Result 133, Processing Time 0.03 seconds

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios (압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Yong-Sseok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

A Study On the Ejector Design Technique And Flow Characteristics (초음속 지상추진시험설비의 이젝터 설계 기법 및 유동 특성 연구)

  • Lee Yang-Ji;Cha Bong-Jun;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • Ejector system are used to transport a low momentum flow to the higher pressure flow by the momentum change between high and low momentum flows. This system is used to simulate the high altitude and Mach number condition over altitude 20 km and Mach 4 of the supersonic test facility. We applied the design and the performance analysis technique(EISIMP code) of the Ramjet Test Facility(RJTF) air system in JAXA to the ejector system of the ramjet test facility in KARI. After preliminary design of the ejector system, we performed a computational study using FLUENT and investigated shock structures and flow characteristics of the ejector system.

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

Study on Aerodynamic Characteristics of a Launch Vehicle with Mach Number, Angle of Attack and Nozzle Effect at Initial Stage (발사초기 단계에서 발사체의 마하수, 받음각 및 노즐 효과에 따른 공력특성 연구)

  • Jeong, Taegeon;Kim, Sungcho;Choi, Jongwook
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Aerodynamic characteristics for a launch vehicle are numerically analyzed with various conditions. The local drag coefficients are high at the nose of the launch vehicle in subsonic region and on the main body in supersonic region because of the induced drag and the wave drag, respectively. The drag coefficients show the similar trend with the angle of attack except zero degree. However, the more the angle of attack increases, the more dependent on the Mach number the lift coefficient is. The body rotation for the flight stability destroys the vortex pair formed above the body opposite to the flight direction, so the flow fields are more or less complicated. The drag coefficient of the launch vehicle at sea level is about three times larger than that at altitude 7.2 km. And the thrust jet at the nozzle causes to reduce the drag coefficient compared with the jetless transonic flight.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

Numerical Simulation of Aeroacoustic Noise at Low Mach Number Flows by Using the Finite Difference Lattice Boltzmann Method (차분래티스 볼츠만 법을 이용한 저Mach수 흐름에서의 유동소음해석)

  • Eun-Ra Kim;Jeong-Hwan Kim;Ho-Keun Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.717-727
    • /
    • 2004
  • In this study, we simulate the aerodynamic sounds generated by a two-dimensional circular cylinder in a uniform flow are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives. and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the Pressure fluctuation around a circular cylinder The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow For the downstream. on the other hand. it quickly Propagates. It is also apparent that the amplitude of sound Pressure is Proportional to $r^{-1/2}$, r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence furthermore a 2D computation of the tone noise radiated by a NACA0012 with a blunt trailing edge at high incidence and low Reynolds number is also investigated.

NUMERICAL ANALYSIS FOR STEADY ASYMMETRIC VORTEX OF CONE AT HIGH ANGLE OF ATTACK (고받음각에서 원뿔형 물체 주위에 발생하는 정상상태 비대칭 와류의 수치해석)

  • Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.171-176
    • /
    • 2007
  • Supersonic viscous flow over a 5 degree half angle cone studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions of 5-deg half angle cone show that the asymmetric flow separation is caused by convective instability. The angle of attack, Reynolds number, and Mach number affected the side force variation that is caused by asymmetric vortical flow.

  • PDF

Numerical Analysis of the Unsteady Subsonic Flow around a Plunging Airfoil

  • Lee, Kyungwhan;Kim, Jaesoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2013
  • Much numerical and experimental research has been done for the flow around an oscillating airfoil. The main research topics are vortex shedding, dynamic stall phenomenon, MAV's lift and thrust generation. Until now, researches mainly have been concentrated on analyzing the wake flow for the variation of frequency and amplitude at a low angle of attack. In this study, wake structures and acoustic wave propagation characteristics were studied for a plunging airfoil at high angle of attack. The governing equations are the Navier-Stokes equation with LES turbulence model. OHOC (Optimized High-Order Compact) scheme and 4th order Runge-Kutta method were used. The Mach number is 0.3, the Reynolds number is, and the angle of attack is from $20^{\circ}$ to $50^{\circ}$. The plunging frequency and the amplitude are from 0.05 to 0.15, and from 0.1 to 0.2, respectively. Due to the high resolution numerical method, wake vortex shedding and pressure wave propagation process, as well as the propagation characteristics of acoustic waves can be simulated. The results of frequency analysis show that the flow has the mixed characteristics of the forced plunging frequency and the vortex shedding frequency at high angle of attack.