• 제목/요약/키워드: High Impedance Surface

검색결과 180건 처리시간 0.019초

접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석 (An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents)

  • 최종혁;조용승;이복희
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

Electrochemical Impedance Study for Selective Dissolution of a Cu-Zn Alloy

  • Hoshi, Y.;Tabei, K.;Shitanda, I.;Itagaki, M.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.311-313
    • /
    • 2016
  • The anodic dissolution behavior of copper and brass in an electrolyte solution of 0.5M NaCl containing 0.5 mM $NaHCO_3$ was investigated by electrochemical impedance spectroscopy. The Nyquist plots of the copper impedance described a small loop in the high-frequency range and a large locus in the low-frequency range. Additionally, the features of the impedance spectrum of the brass were similar to those of the copper. This indicates that the copper-enriched layer formed on the brass surface due to the selective dissolution of the zinc from the surface. In addition, the rest potential and the anodic polarization curve for each sample were measured in order to discuss the selective dissolution of the zinc from the brass surface.

후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계 (Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface)

  • 홍승모
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.473-478
    • /
    • 2021
  • 본 논문은 급증하는 무선통신, 자율주행자동차, 5G 무선통신 및 광대역 어플리케이션 등과 같이 다양한 방면에서 필요로 하는 광대역, 고이득 안테나 필요성에 따라 후면 주파수 선택 표면(FSS, Frequency Selective Surface)을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나를 설계하였다. 제안된 안테나는 이중 금속층을 사용하여 기존의 주파수 선택 표면과 구조적인 차이점을 갖는다. 또한 기존의 안테나 설계에서 갖는 설계의 복잡함을 해결하기 위해 GA(Genetic Algorithms)과 HFSS(High Frequency Structure Simulator) 시뮬레이션을 사용하여 효율성을 증가시켰다. 이를 통해 3.52 GHz ~ 5.92 GHz의 넓은 대역폭과 전체 대역폭에서 10.5 dBi 이상의 이득을 유지하며, 5.1 GHz에서 11.8 dBi의 최고 이득을 갖는다. 기존 안테나와 비교하였을 경우 1.8 GHz의 36% 임피던스 대역폭이 2.4 GHz의 50% 임피던스 대역폭으로 향상되었으며, 이득의 경우 8.6 dBi 증가하는 것을 확인하였다.

와전류법을 이용한 강의 표면경화층 깊이의 비파괴적 측정 (Nondestructive Measurement of Case Hardening Depth with Eddy Current Method)

  • 이계완;한승룡;박은수
    • 비파괴검사학회지
    • /
    • 제11권1호
    • /
    • pp.38-43
    • /
    • 1991
  • The relationship between eddy current response and case hardening depth has been studied on SM40C(KS D-3752) and SCM440(KS D-3711) steels which were surface hardened by high frequency induction hardening. The results obtained in this study were as follows ; 1) Case hardening depth was successfully measured by observing the eddy current impedance changes of each steel. The impedance decreased linearly with increasing case hardening depth. 2) For large impedance gradient between the hardened surface and core metal, the eddy current response was more sensitive to case hardening depth than for low impedance gradient.

  • PDF

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries

  • Park, Su Mi;Kim, Haekyoung
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.638-645
    • /
    • 2015
  • Vanadium redox flow batteries (VRFBs) have been investigated for their potential utility as large energy storage systems due to their advantageous performances in terms of long cycle life, high energy efficiency, low cost, and flexible design. Carbon materials are typically used as electrodes in redox reactions and as a liquid electrolyte support. The activities, surface areas, and surface morphologies of porous carbon materials must be optimized to increase the redox flow battery performance. Here, to reduce the resistance in VRFBs, surface-modified carbon felt electrodes were fabricated, and their structural, morphological, and chemical properties were characterized. The surface-modified carbon felt electrode improved the cycling energy efficiencies in the VRFBs, from 65% to 73%, due to the improved wettability with electrolyte. From the results of impedances analysis with proposed fitting model, the electrolyte-coupled polarization in VRFB dramatically decreased upon modification of carbon felt electrode surface. It is also demonstrated that the compressibility of carbon felt electrodes was important to the VRFB polarization, which are concerned with mass transfer polarization. The impedance analysis will be helpful for obtaining better and longer-lived VRFB performances.

건전지의 성능평가 장치 (A Performance Testing Device of Drycell)

  • 정헌
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.171-175
    • /
    • 2011
  • In this paper, I have developed a high-speed and high-resolution measuring device in order to check the performance of drycell. The system is developed for the drycell manufacturing plant. Measuring time is one of key factors to inference on the production speed. So the developed system is designed to generate the classified result up to 1200ea/min. In the other words, each product can be classified within 25ms. There have been many studies to estimate both state of charge as well as state of health, such as OCV (Open Circuit Voltage), SC (Short Circuit) and measuring impedance with frequency pulse. But those methods take a few second due to surface discharge. To overcome the phenomenon, I developed the method to engage the reverse current to two electrodes of battery. As a result, I could achieve to measure the indigenous capacity without the problem of surface discharge.

장방형 트랜스듀서의 자기방사 임피던스 계산 (Calculation of Self-radiation Impedance for a Rectangular Transducer)

  • 이기욱;김무준;하강열;김천덕
    • 한국음향학회지
    • /
    • 제19권7호
    • /
    • pp.85-89
    • /
    • 2000
  • 본 논문에서는 기 확립한 정방형 진동면의 수열을 사용한 자기 및 상호방사 임피던스 계산법을 확대 적용하여 임의정수의 종횡비를 갖는 장방형 트랜스듀서의 자기방사 임피던스 계산법을 제시하였다. 이 방법은 짧은 시간내에 비교적 정확한 계산 결과를 얻을 수 있는데, 분할한 음원요소의 수에 따른 계산정도 및 계산시간을 고찰한 후, 종횡비가 다른 몇몇 장방형 트랜스듀서의 자기방사 임피던스를 산출하여 기존의 문헌치와 비교하였다.

  • PDF

임피던스를 이용한 흑연재료의 전극특성에 관한 연구 (A study on the characterization of electrode at graphite materials by impedance spectroscopy)

  • 오한준;김인기;이종호;이영훈
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.571-583
    • /
    • 1996
  • 1 mM의 $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ 이온이 첨가된 0.5 M $K_{2}SO_{4}$용액에서 Impedance spectroscopy를 통하여 비교적 porous한 표면조직을 갖는 흑연재료인 electrographite와 graphite foil의 계면의 전기화학적 거동을 조사하였다. 이들 두 흑연재료의 변전위 전류 전압곡선의 경우 전극표면의 구조로 인하여 비교적 높은 전류가 나타났으며, graphite foil의 경우 높은 이중층 용량이 나타났다. 또한 두 재료 모두 field transport의 작용에 의해 분극증가에 따른 임피던스 스펙트럼의 변화와 Faraday-임피던스의 변화가 크게 나타나지 않았다. 특히 electrographite의 경우 전극계면에서 흡착현상이 나타났으며, 양극분극의 증가에 의해 흡착현상은 현저하게 증가하였다.

  • PDF

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

경과 시간에 따른 청색 형광 OLED의 Impedance 특성 (Impedance Characteristics of Blue Fluorescent OLED According to Elapsed Time)

  • 공도훈;양재웅;주성후
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.405-410
    • /
    • 2017
  • In order to study current-voltage-luminance and impedance characteristics according to elapsed time, a blue fluorescent OLED was fabricated. The current density and luminance gradually decreased in accordance with elapsed time and did not emit light after 480 hours, and the threshold voltage increased as time elapsed. The Cole-Cole plot was a semicircular shape of a very large size at 2 V of the applied voltage below the threshold voltage, and the maximum value of the real number impedance did not change greatly from 9314.5 to $9902.2{\Omega}$ as time elapsed. Applied voltages 4, 6, and 8 V above the threshold voltage showed a large change in the real number impedance value at the semicircle end to 9,678.2, 9,826, $9,535.4{\Omega}$ according to the elapsed time from 2,222.5, 183.7, $48.2{\Omega}$ immediately after fabricating the device. By increasing the applied voltage beyond the threshold voltage just after device fabrication, the energy difference between the device and the organic layer was overcome and the current flowed, the maximum value of the real number impedance sharply decreased. As time passed, current did not flow through the element even at high applied voltage due to degradation of the element, and even when the applied voltage was higher than the threshold voltage, it showed an impedance value such as applied voltage equal to or less than the threshold voltage. As a result, it can be learned that the change in the impedance with elapsed time reflects the characteristics due to the degradation of the OLED and can predict the characteristics and lifetime of the OLED.