• Title/Summary/Keyword: High Explosive

Search Result 499, Processing Time 0.028 seconds

A Study on the Mechanism of Explosive Spalling and Spalling Prevention Methods of High-Strength Concrete in Fire Temperature (고강도 콘크리트의 폭렬발생 및 폭렬저감 메커니즘에 관한 문헌적 고찰)

  • Jung, Hee-Jin;Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Nowadays, the use of high strength concrete has become increasingly popular. Thus, the theory of this study gives a definition of HSC mechanism through study factors of spalling occurrence of HSC and solutions of failure mechanism. During the fire goes on, building structure using HSC causes explosive spalling and finally it gets to the breaking of the structure down. As a result of this failure mechanism, it remains to be investigated to prevent from explosive spalling of HSC and needs to provide basic problems of HSC at high temperature.

  • PDF

Explosive Spalling of Structural Lightweight Aggregate Concrete (구조용 경량골재 콘크리트의 폭렬특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun;Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Analysis on the Risk of Explosive Terror in Domestic Buildings (국내 건물의 폭발물 테러 위험도 요인 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • According to the global status of terroristic acts occurred from 2002 to 2010, 10,431(nearly 52.2%) of 19,946 cases have happened by bomb blasts, and 10,431(nearly 52.2%) of weapons used for terrorism were explosive substances Therefore, this study analyzed the terrorism risks of buildings according to height through FEMA 455 - rapid visual screening. As a result, the higher the building is, the higher the terror risk gets. It shows that total risk increases proportionally to buildings's height. In case of buildings over 100 meter high, the total risk is most affected by threat items. According to the risk of explosion associated with the scenario analysis, buildings over 100 meter high have high risks of Internal-Explosive.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-97
    • /
    • 2020
  • Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.

Recent Research Trends in Explosive Detection through Electrochemical Methods (전기화학적 방법을 통한 폭발물 검출 연구동향)

  • Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.

The Engineering Properties of Concrete Exposed at High Temperature (고온을 받은 콘크리트의 공학적 특성)

  • 권영진;김용로;장재봉;김무한
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • The purpose of this study is to present data for the reusing, rehabilitation and estimation of safety of RC structure damaged by fire, and for the prevention of explosive spatting by investigation the properties of explosive spalling, compressive strength and ultrasonic pulse velocity according to kinds of fine aggregate, admixture and water-cement ratios. In explosive spalling properties with kinds of aggregate, explosive spalling does not appear or little at surface in the case of used sea sand, but the case of using recycled sand or crushed sand is worse and worse. Property with the kind of admixture does not appear specially. And high strength concrete with W/C 30.5% was taken spalling, but 55% does not appear. It is found that residual compressive strength after exposed at high temperature showed 45% in W/C 55%, and 64% in W/C 30.5% of its original strength averagely. Ultrasonic pulse velocity is different with kinds of aggregate. W/C. and heating time. When 3 month age after heating ultrasonic pulse velocity is recovered abut 1.3%~8.4% of its 1 month age after heating.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

Characterization of Fiber Connectivity in Fire-resistant High Strength Concrete using Percolation Theory (Percolation 이론을 이용한 내화 고강도 콘크리트의 내부 섬유 연결성 파악)

  • Shin, Young-Sub;Han, Tong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against explosive spalling under elevated temperature, fibers can be mixed with concrete to provide flow paths of evaporated water within concrete to the free surface. The fiber-mix concrete approach is effective against explosive spalling when the flow path generated from melting fibers at the elevated temperature is interconnected to transport high pressurized evaporated water from the inside concrete to the free surface. The percolation theory can identify the connectivity of the fibers and provide an estimate of the fire-resistance of concrete by investigating layout of fibers. In this study, the correlation between percolation theory and explosive spalling of fiber-mixed high strength concrete is analyzed and the connectivity of the fiber in concrete is stereologically investigated by using virtual specimens of fiber-mixed high strength concrete.