Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.2.86

Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions  

Yang, Jun-Ho (Department of Mechanical & Aerospace Engineering, Seoul National University)
Yoh, Jai-Ick (Department of Mechanical & Aerospace Engineering, Seoul National University)
Publication Information
Analytical Science and Technology / v.33, no.2, 2020 , pp. 86-97 More about this Journal
Abstract
Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.
Keywords
LIBS (laser-induced breakdown spectroscopy); overlapping fingerprints; trace explosives; raman spectroscopy; multivariate analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Johnston and K. Rogers, Appl. Spectrosc., 71(9), 2102-2110 (2017).   DOI
2 L. J. Radziemski, Spectrochim. Acta, Part B., 57(7), 1109-1113 (2002).   DOI
3 D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66(4), 347-419 (2012).   DOI
4 J.-H. Yang, S.-J. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 134, 25-32 (2017).   DOI
5 J.-H. Yang and J. J. Yoh, Appl. Spectrosc., 72(7), 1047-1056 (2018).   DOI
6 J.-H. Yang and J. J. Yoh, Microchem. J., 139, 386-393 (2018).   DOI
7 K.-J. Lee, S.-J. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 101, 335-341 (2014).   DOI
8 S. H. Lee, H. Do and J. J. Yoh, Combust. Flame., 165, 334-345 (2016).   DOI
9 S. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 134, 75-80 (2017).   DOI
10 J. Feng, Y. Shi and J. Zhou, IEEE Trans Information Forensic and Security, 7(5), 1498-1510 (2012).   DOI
11 B. Stojanovic, A. Neskovic and O. Marques, Multimedia Tools and Applications, 76(10), 12775-12799 (2017).   DOI
12 Y. Mou and J. M. Rabalais, J. Forensic Sci., 54(4), 846-850 (2009).   DOI
13 H. Lees, F. Zapata, M. Vaher and C. Garcia-Ruiz, Talanta, 184, 437-445 (2018).   DOI
14 C. Ricci and S. G. Kazarian, Surf. Interface Anal., 42(5), 386-392 (2010).   DOI
15 M. J. West and M. J. Went, Forensic Sci. Int., 174(1), 1-5 (2018).   DOI
16 E. D. Emmons, A. Tripathi, J. A. Guicheteau, S. D. Christesen and A. W. Fountain, Appl. Spectrosc., 63(11), 1197-1203 (2009).   DOI
17 M. Abdelhamid, F. Fortes, M. Harith and J. Lasernas, J. Anal. At. Spectrom., 26(7), 1445-1450 (2010).   DOI
18 M. Abdelhamid, F. Fortes, J. Laserna and M. Harith, AIP Conference Proceedings, 55-59 (2011).
19 P. Lucena, I. Gaona, J. Moros and J. J. Laserna, Spectrochim. Acta, Part B., 85, 71-77 (2013).   DOI
20 R. Bradshaw, W. Rao, R. Wolstenholme, M. R. Clench, S. Bleay and S. Francese, Forensic Sci. Int., 222(13), 318-26 (2012).   DOI
21 Z. Baber and A. Q. Malik, Fire Mater., 41(2), 131-141 (2017).   DOI
22 N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari and M. K. Gundawars, Anal. Chem., 84(6), 2686-2694 (2012).   DOI
23 S. Laville, M. Sabsabi and F. R. Doucet, Spectrochim. Acta, Part B., 62(12), 1557-1566 (2017).   DOI
24 N. E. Archer, Y. Charles, J. A. Elliott and S. Jickellss, Forensic Sci. Int., 154(2), 224-239 (2005).   DOI
25 R. S. Croxton, M. G. Baron, D. Butler, T. Kent and V. G. Searss, Forensic Sci. Int., 199(1), 93-102 (2010).   DOI
26 K. M. Antoine, S. Mortazavi, A. D. Miller and L. M. Millers, J. Forensic Sci., 55(2), 513-518 (2010).   DOI
27 A. Kramida, Y. Ralchenko and J. Reader, 'NIST atomic spectra database (ver. 5.2)', 2015.
28 N. Toupry, H. Poulet, M. Le Postollec, R. M. Pick and M. Yvinec, J. Raman Spectrosc., 14(3), 166-177 (1983).   DOI
29 S. Choi, D. Kim, J. Yang and J. J. Yoh, Appl. Spectrosc. 71(4), 678-685 (2017).   DOI