• Title/Summary/Keyword: High Energy Electron Beam

Search Result 282, Processing Time 0.03 seconds

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Growth and structure of $CeO_2$ films by oxygen-plasma-assisted molecular beam epitaxy (산소 플라즈마에서의 분자살 적층성장에 의한 $CeO_2$ 박막의 성장과 구조)

  • ;S.A. Chambers
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.16-23
    • /
    • 2000
  • The epitaxial growth of $CeO_2$ films has been investigated on three different substrates-Si(111), $SrTiO_3$(001), and MgO(001)-over wide range of growth parameters using oxygen-plasma-assisted molecular beam epitaxy. Pure-phase, single-crystalline epitaxial films of $CeO_2$ (001) have been grown only on $SrTiO_3$(001). We discuss the growth conditions in conjunction with the choice of substrates required to synthe-size this oxide, as well as the associated characterization by menas of x-ray diffraction, reflection high-energy electron diffraction, low-energy electron diffraction, and x-ray photoelectron spectroscopy and diffraction. Successful growth of single crystalline $CeO_2$ depends critically on the choice of substrate and is rather insensitive to the growth conditions studied in this investigation. $CeO_2$(001) films on $SrTiO_3$exhibit the sturcture of bulk $CeO_2$ without surface reconstructions. Ti outdiffusion is observed on the films grown temperatures above $650^{\circ}C$.

  • PDF

A Comparative Study on Electron-Beam and Thermal Curing Properties of Epoxy Resins (에폭시 수지의 전자선 및 열경화 특성에 관한 연구)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.80-87
    • /
    • 2002
  • A comparative study using electron-beam(EB) and thermal curing techniques was carried out to determine the effect of cure behavior and thermal stability of epoxy resins. In this work, benzylquinoxalinium hexafluoroantimonate(BQH) was used as a latent cationic catalyst for an epoxy resin. According to the thermogravimetric analysis(TGA), the decomposed activation energy based on Coats-Redfern method was higher in the case of thermal curing technique. This could be interpreted in terms of slow thermal diffusion rate resulted from high crosslink density of the thermally cured epoxy resin. However, the increase of hydroxyl group in the epoxy resin cured by EB technique was observed in near-infrared spectroscopy(NIRS) measurements, resulting in improving the stable short aromatic chain structure, integral procedural decomposition temperature, and finally ductile properties for high impact strengths.

Microstructural ananalysis of AlN thin films on Si substrate grown by plasma assisted molecular beam epitaxy (RAMBE를 사용하여 Si 기판 위에 성장된 AIN 박막의 결정성 분석)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • Microstructures of AlN thin films on Si substrates grown by plasma assisted molecular beam epitaxy were analyzed with various growth temperatures and substrate orientations. Reflection high energy electron diffraction (RHEED) patterns were checked for the in-situ monitoring of the growth condition. X-ray diffraction(XRD), double crystal X-ray diffraction (DCXD), and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the microstructure of the films after growth. On Si(100) sub-strates, AlN thin films were grown mostly along the hexagonal c-axis orientation at temperature higher than $850^{\circ}C$. On the other hand the AlN films on Si(111) were epitaxially grown with directional coherencies in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112). The microstructure of AlN thin films on Si(111) substrates, with a full width at half maximum of almost 3000 arcsec at 2$\theta$=$36.2^{\circ}$, showed that the single crystal films were grown, even if they includ a lot of crystal defects such as dislocations and stacking faults.

  • PDF

Analysis of the Electrical Defect Detection Mechanism using a Low Energy Electron Beam on the TFT Substrate for TFT-LCDs (TFT-LCD용 TFT기판에서 저에너지 전자빔을 이용한 전기적 결함 검출 메카니즘 분석)

  • Oh, Tae-Sik;Kim, Ho-Seob;Kim, Dae-Wook;Ahn, Seung-Joon;Lee, Gun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1803-1811
    • /
    • 2011
  • We have analyzed the electrical defect detection mechanism using low energy microcolumn on the TFT substrate for TFT-LCD. In this study, we have acquired the SEM images of the various pixel defects for 7-inch TFT substrate by scanning of low energy electron beam in the high vacuum chamber. Futhermore, we have interpreted the defect detection mechanism through the correlations between the SEM images and electrical behaviors of the defective pixels. As a result, we obtained consistent results as the follows. We can confirm that the SEM images using low energy electron beam are significantly affected by the space charge effect.

A Study on the Equipment of Neutral Beam Assisted Deposition for MgO Protective Layer of High Efficient AC PDP (고효율 AC PDP용 MgO 보호막 형성을 위한 중성빔 보조 증착 장비에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.63-67
    • /
    • 2008
  • The MgO protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by ion beam assisted deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, oxygen neutral beam assisted deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in F/$F^+$ centers, crystal orientation, surface morphology of the MgO thin film, and the discharge characteristics of AC PDP. The lowest firing voltage $(V_f)$ and the highest secondary electron emission coefficient $(\gamma)$ were obtained when the neutral beam energy was 300 eV.

  • PDF

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron (고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動))

  • Chu, S.S.;Lee, D.H.;Choi, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF