• 제목/요약/키워드: High Efficiency Solar Cell

검색결과 551건 처리시간 0.031초

슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향 (Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module)

  • 이성은;박지수;오원제;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

후면전극형 태양전지의 고효율화를 위한 최적화 연구 (Optimization for High Efficiency of Point Contact Solar Cell)

  • 안병섭;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.345-350
    • /
    • 2011
  • This paper was carried about optimization for high efficiency of point contact solar cell. We have studied on the characteristics of power converter according to each parameter for the optimization for high efficiency of point contact solar cell on this study. We have 25.1352% of convert efficiency after adapt optimal parameters as mentioned in point body and superior conclusion is drawn by comparison with general efficiency has within 20%. At this time, the value of parameter is 100 um cell pitch, 0.01 um AR coating, 0.9 um N+ FSF thickness., etc. This study will continue to go on for optimization for efficiency in future, as it looks now, the results of this study would contribute to the business of high efficiency of point contact solar cell.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

STUDY ON THE HIGH EFFICIENCY BURIED CONTACT SOLAR CELL WITH WET ETCHING PROCESS

  • Kang, Dae-Keun;Choi, Kang-Ho;Lee, Joo-Yul;Lee, Kyu-Hwan
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.156-156
    • /
    • 2009
  • High efficiency silicon solar cell technology based on planar technology has been improved by various kinds of process by using the wet etching process. In particular, the buried contact solar cell has been successfully studied. In the present work, a simplified process of the buried contact solar cell has been suggested to help one design effectively the high-efficiency solar cell.

  • PDF

페로브스카이트 태양전지 (Perovskite solar cell)

  • 이진욱;박남규
    • 진공이야기
    • /
    • 제1권4호
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF

나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술 (Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process)

  • 조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.

선택적 에미터를 적용한 고효율 결정질 실리콘 태양전지 구조 설계 (Design analysis of high efficiency crystalline silicon solar cell using the selective emitter)

  • 임종근;이원재;문인식;오훈;조은철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.355-358
    • /
    • 2009
  • This paper presents the technology of selective emitter for high efficiency crystalline silicon solar cell. The effect of selective emitter is analyzed by using the simulation program for solar cell, PC1D. The selective emitter shows better spectral response in short wavelength regions compared to homogeneous emitter. Therefore, the efficiency of solar cell with selective emitter can be improved by changing the sheet resistance from 60 $\Omega/\square$ to 120 $\Omega/\square$. In addition, the power loss of solar cell can be minimized by optimizing width and gap of the finger electrodes on the selective emitter.

  • PDF

SOD(Spin On Doping)법을 이용한 저가 고효율 태양전지에 관한 연구 (A Study of low cost and high efficiency Solar Cell using SOD(spin on doping))

  • 박성현;김경해;문상일;김대원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1054-1056
    • /
    • 2002
  • High temperature Kermal diffusion from $POCl_3$ source usually used for conventional process through put of a cell manufacturing line and potentially reduce cell efficiency through bulk like time degradation. To fabricate high efficiency solar cells with minimal thermal processing, spin-on-doping(SOD) technique can be employed to emitter diffusion of a silicon solar cell. A technique is presented to emitter doping of a mono-crystalline solar cell using spin-on doping (SOD). Moreover it is shown that the sheet resistance variation with RTA temperature and time fer mono-crystalline and multi-crystalline silicon samples. This novel SOD technique was successfully used to produces 11.3% efficiency l04mm by 104mm size mono-crystalline silicon solar cells.

  • PDF

PRESENT AND FUTURE OF SUPER HIGH-EFFICIENCY TANDEM SOLAR CELLS

  • Yamaguchi, Masafumi
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, present status of super high-efficiency tandem solar cells has been reviewed and key issues for realizing super high-efficiency have also been discussed. In addition, the terretrial R&D activities of tandem cells, in the New Sunshine Program of MITI(Ministry of International Trade and Industry) and NEDO(New Energy and Industrial Technology Development Organization) in Japan are reviewed briefly. The mechanical stacked 3-junction cells of monolithically grown InGaP/GaAs 2-junction cells and InGaAs cells have reached the highest efficiency achieved in Japan of 33.3% at 1-sun AM1.5. This paper also reports high-efficiency InGaP/GaAs 2-junction solar cells with a world-record efficiency of 26.9% at AM0, 28$^{\circ}C$ and radiation damage recovery phenomena of the tandem cell performance due to minority-carrier injection under light illumination or forward bias, which causes defect annealing in InGaP top cells. Future prospects for realizing super-high efficiency and low-cost tandem solar cells are also described.

  • PDF